Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determinants of amyloid fibril degradation by the PDZ protease HTRA1

Abstract

Excessive aggregation of proteins has a major impact on cell fate and is a hallmark of amyloid diseases in humans. To resolve insoluble deposits and to maintain protein homeostasis, all cells use dedicated protein disaggregation, protein folding and protein degradation factors. Despite intense recent research, the underlying mechanisms controlling this key metabolic event are not well understood. Here, we analyzed how a single factor, the highly conserved serine protease HTRA1, degrades amyloid fibrils in an ATP-independent manner. This PDZ protease solubilizes protein fibrils and disintegrates the fibrillar core structure, allowing productive interaction of aggregated polypeptides with the active site for rapid degradation. The aggregate burden in a cellular model of cytoplasmic tau aggregation is thus reduced. Mechanistic aspects of ATP-independent proteolysis and its implications in amyloid diseases are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disintegration of tau fibrils by HTRA1S328A.
Figure 2: Cell culture model of tau aggregation and sarkosyl extraction of HA-tagged tau.
Figure 3: Enhanced proteolysis of tau fibrils.
Figure 4: Association of HTRA1 with fibrils and their proteolysis analyzed by single-molecule approaches.
Figure 5: Analysis of cleavage sites in tau.
Figure 6: Fibril disintegration analyses using HTRA1S328A and HTRA1S328A ΔPDZ.

Similar content being viewed by others

References

  1. Wang, L. Towards revealing the structure of bacterial inclusion bodies. Prion 3, 139–145 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Friedman, R. Aggregation of amyloids in a cellular context: modelling and experiment. Biochem. J. 438, 415–426 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Akerfelt, M., Morimoto, R.I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545–555 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 14, 630–642 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clausen, T., Southan, C. & Ehrmann, M. The HtrA family of proteases. Implications for protein composition and cell fate. Mol. Cell 10, 443–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Clausen, T., Kaiser, M., Huber, R. & Ehrmann, M. HTRA proteases: regulated proteolysis in protein quality control. Nat. Rev. Mol. Cell Biol. 12, 152–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Truebestein, L. et al. Substrate-induced remodeling of the active site regulates human HTRA1 activity. Nat. Struct. Mol. Biol. 18, 386–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Chien, J. et al. Serine protease HtrA1 associates with microtubules and inhibits cell migration. Mol. Cell. Biol. 29, 4177–4187 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tiaden, A.N. & Richards, P.J. The emerging roles of HTRA1 in musculoskeletal disease. Am. J. Pathol. 182, 1482–1488 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Jones, A. et al. Increased expression of multifunctional serine protease, HTRA1, in retinal pigment epithelium induces polypoidal choroidal vasculopathy in mice. Proc. Natl. Acad. Sci. USA 108, 14578–14583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vierkotten, S., Muether, P.S. & Fauser, S. Overexpression of HTRA1 leads to ultrastructural changes in the elastic layer of Bruch′s membrane via cleavage of extracellular matrix components. PLoS ONE 6, e22959 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grau, S. et al. The role of human HtrA1 in arthritic disease. J. Biol. Chem. 281, 6124–6129 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Tsuchiya, A. et al. Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone 37, 323–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Chamberland, A. et al. Identification of a novel HtrA1-susceptible cleavage site in human aggrecan: evidence for the involvement of HtrA1 in aggrecan proteolysis in vivo. J. Biol. Chem. 284, 27352–27359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Campioni, M. et al. The serine protease HtrA1 specifically interacts and degrades the tuberous sclerosis complex 2 protein. Mol. Cancer Res. 8, 1248–1260 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Clawson, G.A., Bui, V., Xin, P., Wang, N. & Pan, W. Intracellular localization of the tumor suppressor HtrA1/Prss11 and its association with HPV16 E6 and E7 proteins. J. Cell. Biochem. 105, 81–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Chien, J., He, X. & Shridhar, V. Identification of tubulins as substrates of serine protease HtrA1 by mixture-based oriented peptide library screening. J. Cell. Biochem. 107, 253–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chien, J., Campioni, M., Shridhar, V. & Baldi, A. HtrA serine proteases as potential therapeutic targets in cancer. Curr. Cancer Drug Targets 9, 451–468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, Z. et al. A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314, 992–993 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Grau, S. et al. Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc. Natl. Acad. Sci. USA 102, 6021–6026 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Milner, J.M., Patel, A. & Rowan, A.D. Emerging roles of serine proteinases in tissue turnover in arthritis. Arthritis Rheum. 58, 3644–3656 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Hara, K. et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N. Engl. J. Med. 360, 1729–1739 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Gamblin, T.C. et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 100, 10032–10037 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, Y.P., Biernat, J., Pickhardt, M., Mandelkow, E. & Mandelkow, E.M. Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proc. Natl. Acad. Sci. USA 104, 10252–10257 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spillantini, M.G. & Goedert, M. Tau pathology and neurodegeneration. Lancet Neurol. 12, 609–622 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Tennstaedt, A. et al. Human high temperature requirement serine protease A1 (HTRA1) degrades tau protein aggregates. J. Biol. Chem. 287, 20931–20941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, W. & Lee, V.M. Characterization of two VQIXXK motifs for tau fibrillization in vitro. Biochemistry 45, 15692–15701 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Bibow, S. et al. The dynamic structure of filamentous tau. Angew. Chem. Int. Edn Engl. 50, 11520–11524 (2011).

    Article  CAS  Google Scholar 

  29. Crowther, R.A. Straight and paired helical filaments in Alzheimer disease have a common structural unit. Proc. Natl. Acad. Sci. USA 88, 2288–2292 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo, J.L. & Lee, V.M. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286, 15317–15331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mukrasch, M.D. et al. Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol. 7, e34 (2009).

    Article  PubMed  CAS  Google Scholar 

  32. Kuperstein, I. et al. Neurotoxicity of Alzheimer's disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J. 29, 3408–3420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilken, C., Kitzing, K., Kurzbauer, R., Ehrmann, M. & Clausen, T. Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease domain. Cell 117, 483–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Krojer, T. et al. Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc. Natl. Acad. Sci. USA 105, 7702–7707 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meltzer, M. et al. Allosteric activation of HtrA protease DegP by stress signals during bacterial protein quality control. Angew. Chem. Int. Edn Engl. 47, 1332–1334 (2008).

    Article  CAS  Google Scholar 

  36. Merdanovic, M. et al. Determinants of structural and functional plasticity of a widely conserved protease chaperone complex. Nat. Struct. Mol. Biol. 17, 837–843 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Eigenbrot, C. et al. Structural and functional analysis of HtrA1 and its subdomains. Structure 20, 1040–1050 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Risør, M.W. et al. The autolysis of human HtrA1 is governed by the redox state of its N-terminal domain. Biochemistry 53, 3851–3857 (2014).

    Article  PubMed  CAS  Google Scholar 

  39. Jaru-Ampornpan, P. et al. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit. Nat. Struct. Mol. Biol. 17, 696–702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Krojer, T. et al. Structural basis for the regulated protease and chaperone function of DegP. Nature 453, 885–890 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Malet, H. et al. Binding of substrate proteins inside the molecular cage of the chaperone-protease DegQ. Nat. Struct. Mol. Biol. 19, 152–157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miyata, Y., Koren, J., Kiray, J., Dickey, C.A. & Gestwicki, J.E. Molecular chaperones and regulation of tau quality control: strategies for drug discovery in tauopathies. Future Med. Chem. 3, 1523–1537 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Dou, F. et al. Chaperones increase association of tau protein with microtubules. Proc. Natl. Acad. Sci. USA 100, 721–726 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DeSantis, M.E. et al. Operational plasticity enables hsp104 to disaggregate diverse amyloid and nonamyloid clients. Cell 151, 778–793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnson, G.V. Tau phosphorylation and proteolysis: insights and perspectives. J. Alzheimers Dis. 9, 243–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Hegde, A.N. & Upadhya, S.C. Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. Biochim. Biophys. Acta 1809, 128–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Karring, H. et al. Composition and proteolytic processing of corneal deposits associated with mutations in the TGFBI gene. Exp. Eye Res. 96, 163–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Hardy, J. & Revesz, T. The spread of neurodegenerative disease. N. Engl. J. Med. 366, 2126–2128 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Searcy, J.L., Le Bihan, T., Salvadores, N., McCulloch, J. & Horsburgh, K. Impact of age on the cerebrovascular proteomes of wild-type and Tg-SwDI mice. PLoS ONE 9, e89970 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thévenaz, P., Ruttimann, U.E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  PubMed  Google Scholar 

  53. Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Michalski, A. et al. Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol. Cell. Proteomics 11, O111013698 (2012).

    Article  CAS  Google Scholar 

  55. Olsen, J.V. et al. Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Schulze and M. Graessl for help with TIRFM, D. Grum and M. Merdanovic with ITC, S. Blaskowski with MS, V. Lux (University Duisburg-Essen) for providing purified PDZ domain and M. Breiden (University Duisburg-Essen) for providing tau. This work was supported by grants EH 100/14-1 (to M.E.) and SFB 1093 (to M.E., M.K. and B.S.) and INST 20876/127-1 FUGG (to M.K.) from Deutsche Forschungsgemeinschaft. The Research Institute of Molecular Pathology is funded by Boehringer Ingelheim.

Author information

Authors and Affiliations

Authors

Contributions

S.P. designed and carried out experiments, analyzed data and wrote the paper; A.S. and B.S. carried out AFM; F.K. and M.K. carried out MS; C.G. and S.R. carried out EM; T.C. performed biochemistry; and M.E. outlined the work and wrote the paper.

Corresponding author

Correspondence to Michael Ehrmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–9. (PDF 21400 kb)

Supplementary Data Set 1

Uncut gel images: full gels of Figs 1a, 2c, 3a–c, 6a and 6e. (PDF 7454 kb)

TIRF microscopy of fibril degradation. (AVI 472 kb)

TIRF microscopy of tau fibrils. (AVI 483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poepsel, S., Sprengel, A., Sacca, B. et al. Determinants of amyloid fibril degradation by the PDZ protease HTRA1. Nat Chem Biol 11, 862–869 (2015). https://doi.org/10.1038/nchembio.1931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing