Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rescue and propagation of fully retargeted oncolytic measles viruses

Abstract

Live attenuated measles viruses of the Edmonston lineage (MV-Edm) have potent anti-tumor activity1,2,3,4 but are not entirely tumor-specific owing to widespread distribution of their native receptors, CD465,6 and SLAM7,8,9. We have therefore developed a pseudoreceptor system that allows rescue and propagation of fully retargeted viruses displaying single-chain antibody fragments. Viruses retargeted to tumor-selective CD38, epidermal growth factor receptor (EGFR) or EGFR mutant vIII (EGFRvIII) efficiently entered cells through their respective targeted receptors in vitro and in vivo, but not through CD46 and SLAM. When administered intratumorally or intravenously to mice bearing human CD38 or EGFR-positive human tumor xenografts, the targeted viruses demonstrated specific receptor-mediated anti-tumor activity. These data provide an in vivo demonstration of antibody-directed tumor destruction by retargeted oncolytic viruses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rescue procedure, construction and biochemical characterization of His-tagged retargetable recombinant measles viruses.
Figure 2: Retargeted infection via the targeted receptors in vitro.
Figure 3: In vivo targeting of virus to tumor cells after systemic administration.
Figure 4: Specific receptor-mediated oncolytic activity of retargeted viruses after intratumoral or intravenous administration.

Similar content being viewed by others

References

  1. Peng, K.W. et al. Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 98, 2002–2007 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Peng, K.-W. et al. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res. 62, 4656–4662 (2002).

    CAS  PubMed  Google Scholar 

  3. Grote, D. et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 97, 3746–3754 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Phuong, L.K. et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res. 63, 2462–2469 (2003).

    CAS  PubMed  Google Scholar 

  5. Dorig, R.E., Marcil, A., Chopra, A. & Richardson, C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Naniche, D. et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025–6032 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Hahm, B. et al. Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. J. Virol. 77, 3505–3515 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schneider-Schaulies, S., Bieback, K., Avota, E., Klagge, I. & ter Meulen, V. Regulation of gene expression in lymphocytes and antigen-presenting cells by measles virus: consequences for immunomodulation. J. Mol. Med. 80, 73–85 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. McQuaid, S. & Cosby, S.L. An immunohistochemical study of the distribution of the measles virus receptors, CD46 and SLAM, in normal human tissues and subacute sclerosing panencephalitis. Lab. Invest. 82, 403–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura, T. et al. Antibody-targeted cell fusion. Nat. Biotechnol. 22, 331–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Kaufmann, M. et al. Crystal structure of the anti-His tag antibody 3D5 single-chain fragment complexed to its antigen. J. Mol. Biol. 318, 135–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Masse, N., Barrett, T., Muller, C.P., Wild, T.F. & Buckland, R. Identification of a second major site for CD46 binding in the hemagglutinin protein from a laboratory strain of measles virus (MV): potential consequences for wild-type MV infection. J. Virol. 76, 13034–13038 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hashimoto, K. et al. SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J. Virol. 76, 6743–6749 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Andres, O., Obojes, K., Kim, K.S., ter Meulen, V. & Schneider-Schaulies, J. CD46- and CD150-independent endothelial cell infection with wild-type measles viruses. J. Gen. Virol. 84, 1189–1197 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Mehta, K., Shahid, U. & Malavasi, F. Human CD38, a cell-surface protein with multiple functions. FASEB J. 10, 1408–1417 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Carpenter, G. Receptor tyrosine kinase substrates: src homology domains and signal transduction. FASEB J. 6, 3283–3289 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Kuan, C.T., Wikstrand, C.J. & Bigner, D.D. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr. Relat. Cancer 8, 83–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Schneider, U., Bullough, F., Vongpunsawad, S., Russell, S.J. & Cattaneo, R. Recombinant measles viruses efficiently entering cells through targeted receptors. J. Virol. 74, 9928–9936 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hammond, A.L. et al. Single-chain antibody displayed on a recombinant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J. Virol. 75, 2087–2096 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bucheit, A.D. et al. An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol. Ther. 7, 62–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Peng, K.-W., Holler, P., Orr, B., Kranz, D. & Russell, S.J. Targeting membrane fusion to specific peptide/MHC complexes through a high-affinity T-cell receptor. Gene Ther. 11, 1234–1239 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Wickham, T.J. Ligand-directed targeting of genes to the site of disease. Nat. Med. 9, 135–139 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Kasahara, N., Dozy, A.M. & Kan, Y.W. Tissue-specific targeting of retroviral vectors through ligand-receptor interactions. Science 266, 1373–1376 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Laquerre, S., Anderson, D.B., Stolz, D.B. & Glorioso, J.C. Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J. Virol. 72, 9683–9697 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanerva, A. et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol. Ther. 8, 449–458 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Schmitz, H., Wigand, R. & Heinrich, W. Worldwide epidemiology of human adenovirus infections. Am. J. Epidemiol. 117, 455–466 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Pollara, G., Katz, D.R. & Chain, B.M. The host response to herpes simplex virus infection. Curr. Opin. Infect. Dis. 17, 199–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Virgin, H.W., Dermody, T.S. & Tyler, K.L. Cellular and humoral immunity to reovirus infection. Curr. Top. Microbiol. Immunol. 233, 147–161 (1998).

    CAS  PubMed  Google Scholar 

  30. Harrop, R., Ryan, M.G., Golding, H., Redchenko, I. & Carroll, M.W. Monitoring of human immunological responses to vaccinia virus. Methods Mol. Biol. 269, 243–266 (2004).

    CAS  PubMed  Google Scholar 

  31. Douglas, J.T. et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities. Nat. Biotechnol. 17, 470–475 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Lorimer, I.A. & Lavictoire, S.J. Targeting retrovirus to cancer cells expressing a mutant EGF receptor by insertion of a single chain antibody variable domain in the envelope glycoprotein receptor binding lobe. J. Immunol. Methods 237, 147–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Duprex, W., McQuaid, S., Hangartner, S., Billeter, M. & Rima, B. Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J. Virol. 73, 9568–9575 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Radecke, F. et al. Rescue of measles viruses from cloned DNA. EMBO J. 14, 5773–5784 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Plemper, R.K., Hammond, A.L. & Cattaneo, R. Characterization of a region of the measles virus hemagglutinin sufficient for its dimerization. J. Virol. 74, 6485–6493 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng, K.W. et al. Biodistribution of oncolytic measles virus after intraperitoneal administration into Ifnar-CD46Ge transgenic mice. Hum. Gene Ther. 14, 1565–1577 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Plückthun for the generous gift of His scFv, J.A. Lust for CD38 scFv, G. Winter for EGFR scFv, J.P. Atkinson for CD46 plasmid, Y. Yanagi for CHO-SLAM cells and E. Vitetta for SKOV3ip.1 cells. This study is supported by the Mayo Foundation, Harold W. Siebens Foundation and National Institutes of Health grants CA100634-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J Russell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Growth kinetics of ablated and retargeted viruses propagated on Vero cells. (PDF 87 kb)

Supplementary Fig. 2

In vivo stability of CD38-retargeted measles virus. (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, T., Peng, KW., Harvey, M. et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol 23, 209–214 (2005). https://doi.org/10.1038/nbt1060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing