Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia

Abstract

New high-dimensional, single-cell technologies offer unprecedented resolution in the analysis of heterogeneous tissues. However, because these technologies can measure dozens of parameters simultaneously in individual cells, data interpretation can be challenging. Here we present viSNE, a tool that allows one to map high-dimensional cytometry data onto two dimensions, yet conserve the high-dimensional structure of the data. viSNE plots individual cells in a visual similar to a scatter plot, while using all pairwise distances in high dimension to determine each cell's location in the plot. We integrated mass cytometry with viSNE to map healthy and cancerous bone marrow samples. Healthy bone marrow automatically maps into a consistent shape, whereas leukemia samples map into malformed shapes that are distinct from healthy bone marrow and from each other. We also use viSNE and mass cytometry to compare leukemia diagnosis and relapse samples, and to identify a rare leukemia population reminiscent of minimal residual disease. viSNE can be applied to any multi-dimensional single-cell technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: viSNE map of healthy human bone marrow.
Figure 2: viSNE is robust, consistent, and does not require canonical markers.
Figure 3: Cancer samples form contiguous but heterogeneous shapes.
Figure 4: viSNE reveals the progression of cancer from diagnosis to relapse.
Figure 5: A gating scheme for FACS of an AML relapse sample in patient B based on the viSNE map.
Figure 6: Using viSNE to identify synthetic MRD.

Similar content being viewed by others

References

  1. Bendall, S.C. et al. A deep profiler's guide to cytometry. Trends Immunol. 33, 323–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Petilla Interneuron Nomenclature Group. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

  3. Irish, J.M. et al. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118, 217–228 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Sachs, K. et al. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Majeti, R., Park, C.Y. & Weissman, I.L. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1, 635–645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tarnok, A., Ulrich, H. & Bocsi, J. Phenotypes of stem cells from diverse origin. Cytometry A 77, 6–10 (2010).

    Article  PubMed  Google Scholar 

  7. O'Brien, C.A., Kreso, A. & Dick, J.E. Cancer stem cells in solid tumors: an overview. Semin. Radiat. Oncol. 19, 71–77 (2009).

    Article  PubMed  Google Scholar 

  8. Bandura, D.R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Cornett, D.S. et al. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods 4, 828–833 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Mercer, J. et al. RNAi screening reveals proteasome- and Cullin3-dependent stages in vaccinia virus infection. Cell Rep. 2, 1036–1047 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Ozsolak, F. & Milos, P.M. RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 12, 87–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dalerba, P. et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol. 29, 1120–1127 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benoist, C. & Hacohen, N. Immunology. Flow cytometry, amped up. Science 332, 677–678 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Bendall, S.C. & Nolan, G.P. From single cells to deep phenotypes in cancer. Nat. Biotechnol. 30, 639–647 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Herzenberg, L.A. et al. Interpreting flow cytometry data: a guide for the perplexed. Nat. Immunol. 7, 681–685 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Qiu, P. et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29, 886–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qian, Y. et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin. Cytom. 78 (suppl. 1), S69–S82 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pyne, S. et al. Automated high-dimensional flow cytometric data analysis. Proc. Natl. Acad. Sci. USA 106, 8519–8524 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Van der Maaten, L. & Hinton, G. Visualizing (2579–2605): data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  23. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. van Lochem, E.G. et al. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin. Cytom. 60, 1–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Wakita, S. et al. Mutations of the epigenetics modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia published online doi: 10.1038/leu.2012.317 (8 November 2012).

  26. Campana, D. Status of minimal residual disease testing in childhood haematological malignancies. Br. J. Haematol. 143, 481–489 (2008).

    PubMed  PubMed Central  Google Scholar 

  27. Borowitz, M.J. et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study. Blood 111, 5477–5485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ossenkoppele, G.J., van de Loosdrecht, A.A. & Schuurhuis, G.J. Review of the relevance of aberrant antigen expression by flow cytometry in myeloid neoplasms. Br. J. Haematol. 153, 421–436 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Loken, M.R. et al. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children's Oncology Group. Blood 120, 1581–1588 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van der Maaten, L., Postma, E. & Van Den Herik, H. Dimensionality reduction: A comparative review. J. Mach. Learn. Res. 10, 1–41 (2009).

    Google Scholar 

  32. Blondel, V.D. et al. Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008).

    Article  Google Scholar 

  33. Kotecha, N., Krutzik, P.O. & Irish, J.M. Web-based analysis and publication of flow cytometry experiments. Curr. Protoc. Cytom. 10, 10.17 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank N. Friedman, I. Pe'er and O. Litvin for valuable comments. The authors would also like to thank M. Minden (Princess Margaret Hospital), C. Mullighan, J. Downing and I. Radtke (St. Jude Children's Hospital) for generously providing leukemia samples for mass cytometry analysis. This research was supported by the National Science Foundation CAREER award through grant number MCB-1149728, National Institutes of Health Roadmap Initiative, NIH Director's New Innovator Award Program through grant number 1-DP2-OD002414-01 and National Centers for Biomedical Computing Grant 1U54CA121852-01A1. E.D.A. is a Howard Hughes Medical Institute International Student Research Fellow. K.L.D. is supported by Alex's Lemonade Fund Young Investigator Award and St. Baldrick's Foundation Scholar Award. S.C.B. is supported by the Damon Runyon Cancer Research Foundation Fellowship (DRG-2017-09). G.P.N. is supported by the Rachford and Carlota A. Harris Endowed Professorship and grants from U19 AI057229, P01 CA034233, HHSN272200700038C, 1R01CA130826, CIRM DR1-01477 and RB2-01592, NCI RFA CA 09-011, NHLBIHV-10-05(2), European Commission HEALTH.2010.1.2-1, and the Bill and Melinda Gates Foundation (GF12141-137101). D.P. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund and Packard Fellowship for Science and Engineering.

Author information

Authors and Affiliations

Authors

Contributions

E.D.A., G.P.N. and D.P. conceived the study. E.D.A. and D.P. developed the methods. D.K.S. and M.D.T. implemented parallel t-SNE and cyt, respectively. E.F.S., S.C.B., K.L.D. and G.P.N. designed and performed mass and flow cytometry experiments. E.D.A., J.H.L., E.F.S., S.C.B., K.L.D., S.K. and D.P. performed the biological analysis and interpretation. E.D.A. and M.D.T. performed robustness analysis of the method. E.D.A., J.H.L., K.L.D., E.F.S. and D.P. wrote the manuscript.

Corresponding author

Correspondence to Dana Pe'er.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–20 (PDF 4743 kb)

Supplementary Table 1

Antibody sources, metal isotope and staining concentration for all of the antibodies used throughout the various experiments (XLSX 50 kb)

Supplementary Table 2

Experiment details, per figure. Figure and section refers to the location of the figure in the text (XLSX 13 kb)

Supplementary Data (ZIP 5011 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amir, Ea., Davis, K., Tadmor, M. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31, 545–552 (2013). https://doi.org/10.1038/nbt.2594

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2594

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer