Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung

Abstract

Cystic fibrosis (CF) is a life-shortening disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene1. Although bacterial lung infection and the resulting inflammation cause most of the morbidity and mortality, how the loss of CFTR function first disrupts airway host defence has remained uncertain2,3,4,5,6. To investigate the abnormalities that impair elimination when a bacterium lands on the pristine surface of a newborn CF airway, we interrogated the viability of individual bacteria immobilized on solid grids and placed onto the airway surface. As a model, we studied CF pigs, which spontaneously develop hallmark features of CF lung disease7,8. At birth, their lungs lack infection and inflammation, but have a reduced ability to eradicate bacteria8. Here we show that in newborn wild-type pigs, the thin layer of airway surface liquid (ASL) rapidly kills bacteria in vivo, when removed from the lung and in primary epithelial cultures. Lack of CFTR reduces bacterial killing. We found that the ASL pH was more acidic in CF pigs, and reducing pH inhibited the antimicrobial activity of ASL. Reducing ASL pH diminished bacterial killing in wild-type pigs, and, conversely, increasing ASL pH rescued killing in CF pigs. These results directly link the initial host defence defect to the loss of CFTR, an anion channel that facilitates HCO3 transport9,10,11,12,13. Without CFTR, airway epithelial HCO3 secretion is defective, the ASL pH falls and inhibits antimicrobial function, and thereby impairs the killing of bacteria that enter the newborn lung. These findings suggest that increasing ASL pH might prevent the initial infection in patients with CF, and that assaying bacterial killing could report on the benefit of therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial killing is impaired in CF ASL.
Figure 2: CF and non-CF ASL have similar antimicrobial concentrations and aggregate antimicrobial activity under optimal conditions.
Figure 3: ASL pH is more acidic in CF than non-CF.
Figure 4: Increasing ASL pH enhances antimicrobial activity.

Similar content being viewed by others

Accession codes

Data deposits

Microarray data have been deposited in the Gene Expression Omnibus under accession numbers GSE36906 and GSE21071.

References

  1. Welsh, M. J., Ramsey, B. W., Accurso, F. & Cutting, G. R. in The Metabolic and Molecular Basis of Inherited Disease (eds Scriver, C. R. et al.) 5121–5189 (McGraw-Hill, 2001)

    Google Scholar 

  2. Quinton, P. M. Role of epithelial HCO3 transport in mucin secretion: lessons from cystic fibrosis. Am. J. Physiol. Cell Physiol. 299, C1222–C1233 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gibson, R. L., Burns, J. L. & Ramsey, B. W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 168, 918–951 (2003)

    Article  PubMed  Google Scholar 

  4. Wine, J. J. The genesis of cystic fibrosis lung disease. J. Clin. Invest. 103, 309–312 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guggino, W. B. Cystic fibrosis and the salt controversy. Cell 96, 607–610 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Machen, T. E. Innate immune response in CF airway epithelia: hyperinflammatory? Am. J. Physiol. Cell Physiol. 291, C218–C230 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Rogers, C. S. et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321, 1837–1841 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  8. Stoltz, D. A. et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci. Transl. Med. 2, 29ra31 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fischer, H. & Widdicombe, J. H. Mechanisms of acid and base secretion by the airway epithelium. J. Membr. Biol. 211, 139–150 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poulsen, J. H., Fischer, H., Illek, B. & Machen, T. E. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc. Natl Acad. Sci. USA 91, 5340–5344 (1994)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  11. Smith, J. J. & Welsh, M. J. cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia. J. Clin. Invest. 89, 1148–1153 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, J.-H. et al. Loss of anion transport without increased sodium absorption characterize newborn porcine cystic fibrosis airway epithelia. Cell 143, 911–923 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garnett, J. P. et al. Novel role for pendrin in orchestrating bicarbonate secretion in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing airway serous cells. J. Biol. Chem. 286, 41069–41082 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grubb, B. R. & Boucher, R. C. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol. Rev. 79, S193–S214 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Foundation, C. F. Cystic Fibrosis Foundation Patient Registry: annual data report. (2010)

  16. Ganz, T. Antimicrobial polypeptides. J. Leukoc. Biol. 75, 34–38 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Wine, J. J. & Joo, N. S. Submucosal glands and airway defense. Proc. Am. Thorac. Soc. 1, 47–53 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Smith, J. J., Travis, S. M., Greenberg, E. P. & Welsh, M. J. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85, 229–236 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Lehrer, R. I., Lichtenstein, A. K. & Ganz, T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11, 105–128 (1993)

    Article  CAS  PubMed  Google Scholar 

  20. Zabner, J., Smith, J. J., Karp, P. H., Widdicombe, J. H. & Welsh, M. J. Loss of CFTR chloride channels alters salt absorption by cystic fibrosis airway epithelia in vitro . Mol. Cell 2, 397–403 (1998)

    Article  CAS  PubMed  Google Scholar 

  21. Goldman, M. J. et al. Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88, 553–560 (1997)

    Article  CAS  PubMed  Google Scholar 

  22. Matsui, H. et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. Tarran, R. et al. The CF salt controversy: in vivo observations and therapeutic approaches. Mol. Cell 8, 149–158 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Knowles, M. R. et al. Ion composition of airway surface liquid of patients with cystic fibrosis as compared with normal and disease-control subjects. J. Clin. Invest. 100, 2588–2595 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Selsted, M. E., Szklarek, D. & Lehrer, R. I. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect. Immun. 45, 150–154 (1984)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Song, Y., Salinas, D., Nielson, D. W. & Verkman, A. S. Hyperacidity of secreted fluid from submucosal glands in early cystic fibrosis. Am. J. Physiol. Cell Physiol. 290, C741–C749 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Coakley, R. D. et al. Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc. Natl Acad. Sci. USA 100, 16083–16088 (2003)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  28. Laube, D. M., Yim, S., Ryan, L. K., Kisich, K. O. & Diamond, G. Antimicrobial peptides in the airway. Curr. Top. Microbiol. Immunol. 306, 153–182 (2006)

    CAS  PubMed  Google Scholar 

  29. Do, T. Q. et al. Lipids including cholesteryl linoleate and cholesteryl arachidonate contribute to the inherent antibacterial activity of human nasal fluid. J. Immunol. 181, 4177–4187 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Singh, P. K., Tack, B. F., McCray, P. B., Jr & Welsh, M. J. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L799–L805 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. Rogers, C. S. et al. Production of CFTR-null and CFTR-ΔF508 heterozygous pigs by adenoassociated virus-mediated gene targeting and somatic cell nuclear transfer. J. Clin. Invest. 118, 1571–1577 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  32. Karp, P. H. et al. in Epithelial Cell Culture Protocols Vol. 188 (ed. Wise, C. ) 115–137 (Humana, 2002)

  33. Smith, T. C. et al. Methicillin-resistant Staphylococcus aureus (MRSA) strain ST398 is present in midwestern U.S. swine and swine workers. PLoS ONE 4, e4258 (2009)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Fantner, G. E., Barbero, R. J., Gray, D. S. & Belcher, A. M. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nature Nanotechnol. 5, 280–285 (2010)

    Article  CAS  ADS  Google Scholar 

  35. Cole, A. M., Wu, M., Kim, Y. H. & Ganz, T. Microanalysis of antimicrobial properties of human fluids. J. Microbiol. Methods 41, 135–143 (2000)

    Article  CAS  PubMed  Google Scholar 

  36. Lehrer, R. I., Rosenman, M., Harwig, S. S. L., Jackson, R. & Eisenhauer, P. Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137, 167–173 (1991)

    Article  CAS  PubMed  Google Scholar 

  37. van Eijk, M. et al. Porcine pulmonary collectins show distinct interactions with influenza A viruses: role of the N-linked oligosaccharides in the carbohydrate recognition domain. J. Immunol. 171, 1431–1440 (2003)

    Article  CAS  PubMed  Google Scholar 

  38. Singer, M. et al. A MARCKS-related peptide blocks mucus hypersecretion in a mouse model of asthma. Nature Med. 10, 193–196 (2004)

    Article  CAS  PubMed  Google Scholar 

  39. Blossfeld, S. & Gansert, D. A novel non-invasive optical method for quantitative visualization of pH dynamics in the rhizosphere of plants. Plant Cell Environ. 30, 176–186 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. Shuba, Y. M., Dietrich, C. J., Oermann, E., Cleemann, L. & Morad, M. Local extracellular acidification caused by Ca2+-dependent exocytosis in PC12 cells. Cell Calcium 44, 220–229 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. Travis, S. M. et al. Activity of abundant antimicrobials of the human airway. Am. J. Respir. Cell Mol. Biol. 20, 872–879 (1999)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Bartlett, X. Chamling, J.-H. Chen, L. Durairaj, N. Gansemer, E. Hornick, P. Hughes, P. Ludwig, T. Mayhew, K. Mohn, L. Ostedgaard, M. Rector, L. Reznikov, L. Schneider, A. Shelton, T. Starner, P. Tan, A. Tucker, A. Walimbe and T. Yahr for assistance and/or discussion. This work was supported by the National Institutes of Health (NIH; HL51670, HL091842, HL102288) and the Cystic Fibrosis Foundation. D.A.S. was supported by AI076671 and Gilead Sciences Research Scholars Program in Cystic Fibrosis. H.P.H. was supported by Program Grant (RGP001612009-C) of the Human Frontier Science Program. M.J.W. is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Contributions

A.A.P., X.X.T., M.J.H., M.H.A.A., S.R., D.A.S., P.B.M., M.J.W. and J.Z. designed studies. A.A.P., X.X.T., M.J.H., M.H.A.A., S.R., T.O.M., P.H.K., C.L.W.-L., H.P.H., M.v.E., B.B., A.R.H. and D.A.S. performed experiments. A.A.P., X.X.T., M.J.H., M.H.A.A., S.R., D.A.S., P.B.M., M.J.W. and J.Z. wrote the manuscript.

Corresponding authors

Correspondence to Michael J. Welsh or Joseph Zabner.

Ethics declarations

Competing interests

M.J.W. was co-founder of Exemplar Genetics, a company licensing materials and technology related to this work.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary References, Supplementary Tables 1-3 and Supplementary Figures 1-7. (PDF 1484 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pezzulo, A., Tang, X., Hoegger, M. et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487, 109–113 (2012). https://doi.org/10.1038/nature11130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11130

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing