Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Essential role for Nix in autophagic maturation of erythroid cells

Abstract

Erythroid cells undergo enucleation and the removal of organelles during terminal differentiation1,2,3. Although autophagy has been suggested to mediate the elimination of organelles for erythroid maturation2,3,4,5,6, the molecular mechanisms underlying this process remain undefined. Here we report a role for a Bcl-2 family member, Nix (also called Bnip3L)7,8,9, in the regulation of erythroid maturation through mitochondrial autophagy. Nix-/- mice developed anaemia with reduced mature erythrocytes and compensatory expansion of erythroid precursors. Erythrocytes in the peripheral blood of Nix-/- mice exhibited mitochondrial retention and reduced lifespan in vivo. Although the clearance of ribosomes proceeded normally in the absence of Nix, the entry of mitochondria into autophagosomes for clearance was defective. Deficiency in Nix inhibited the loss of mitochondrial membrane potential (ΔΨm), and treatment with uncoupling chemicals or a BH3 mimetic induced the loss of ΔΨm and restored the sequestration of mitochondria into autophagosomes in Nix-/- erythroid cells. These results suggest that Nix-dependent loss of ΔΨm is important for targeting the mitochondria into autophagosomes for clearance during erythroid maturation, and interference with this function impairs erythroid maturation and results in anaemia. Our study may also provide insights into molecular mechanisms underlying mitochondrial quality control involving mitochondrial autophagy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reticulocytosis and retention of mitochondria in Nix -/- RBCs.
Figure 2: Decreased survival of RBCs in Nix -/- mice.
Figure 3: Defective clearance of mitochondria by autophagy in Nix -/- reticulocytes.
Figure 4: Removal of mitochondria by autophagy in FCCP-treated or ABT-737-treated Nix -/- reticulocytes.

Similar content being viewed by others

References

  1. Yoshida, H. et al. Phosphatidylserine-dependent engulfment by macrophages of nuclei from erythroid precursor cells. Nature 437, 754–758 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Fader, C. M. & Colombo, M. I. Multivesicular bodies and autophagy in erythrocyte maturation. Autophagy 2, 122–125 (2006)

    Article  Google Scholar 

  3. Koury, M. J., Koury, S. T., Kopsombut, P. & Bondurant, M. C. In vitro maturation of nascent reticulocytes to erythrocytes. Blood 105, 2168–2174 (2005)

    Article  CAS  Google Scholar 

  4. Kent, G., Minick, O. T., Volini, F. I. & Orfei, E. Autophagic vacuoles in human red cells. Am. J. Pathol. 48, 831–857 (1966)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Heynen, M. J. & Verwilghen, R. L. A quantitative ultrastructural study of normal rat erythroblasts and reticulocytes. Cell Tissue Res. 224, 397–408 (1982)

    Article  CAS  Google Scholar 

  6. Takano-Ohmuro, H., Mukaida, M., Kominami, E. & Morioka, K. Autophagy in embryonic erythroid cells: its role in maturation. Eur. J. Cell Biol. 79, 759–764 (2000)

    Article  CAS  Google Scholar 

  7. Chen, G. et al. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J. Biol. Chem. 274, 7–10 (1999)

    Article  CAS  Google Scholar 

  8. Imazu, T. et al. Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene 18, 4523–4529 (1999)

    Article  CAS  Google Scholar 

  9. Diwan, A. et al. Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc. Natl Acad. Sci. USA 104, 6794–6799 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Aerbajinai, W., Giattina, M., Lee, Y. T., Raffeld, M. & Miller, J. L. The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood 102, 712–717 (2003)

    Article  CAS  Google Scholar 

  11. Kina, T. et al. The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br. J. Haematol. 109, 280–287 (2000)

    Article  CAS  Google Scholar 

  12. Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983)

    Article  CAS  Google Scholar 

  13. Socolovsky, M. et al. Ineffective erythropoiesis in Stat5a-/-5b-/- mice due to decreased survival of early erythroblasts. Blood 98, 3261–3273 (2001)

    Article  CAS  Google Scholar 

  14. Holm, T. M. et al. Failure of red blood cell maturation in mice with defects in the high-density lipoprotein receptor SR-BI. Blood 99, 1817–1824 (2002)

    Article  CAS  Google Scholar 

  15. Sivilotti, M. L. Oxidant stress and haemolysis of the human erythrocyte. Toxicol. Rev. 23, 169–188 (2004)

    Article  CAS  Google Scholar 

  16. Raha, S. & Robinson, B. H. Mitochondria, oxygen free radicals, and apoptosis. Am. J. Med. Genet. 106, 62–70 (2001)

    Article  CAS  Google Scholar 

  17. Hoffmann-Fezer, G. et al. Biotin labeling as an alternative nonradioactive approach to determination of red cell survival. Ann. Hematol. 67, 81–87 (1993)

    Article  CAS  Google Scholar 

  18. Levin, J. et al. Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2. Blood 94, 3037–3047 (1999)

    CAS  PubMed  Google Scholar 

  19. Fadok, V. A., Bratton, D. L., Frasch, S. C., Warner, M. L. & Henson, P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5, 551–562 (1998)

    Article  CAS  Google Scholar 

  20. Caserta, T. M., Smith, A. N., Gultice, A. D., Reedy, M. A. & Brown, T. L. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8, 345–352 (2003)

    Article  CAS  Google Scholar 

  21. Vannucchi, A. M. et al. Accentuated response to phenylhydrazine and erythropoietin in mice genetically impaired for their GATA-1 expression (GATA-1low mice). Blood 97, 3040–3050 (2001)

    Article  CAS  Google Scholar 

  22. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005)

    Article  CAS  Google Scholar 

  23. Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelarova, H. & Meijer, A. J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243, 240–246 (1997)

    Article  CAS  Google Scholar 

  24. Kabeya, Y. et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117, 2805–2812 (2004)

    Article  CAS  Google Scholar 

  25. Gottlieb, E., Vander Heiden, M. G. & Thompson, C. B. Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor α-induced apoptosis. Mol. Cell. Biol. 20, 5680–5689 (2000)

    Article  CAS  Google Scholar 

  26. Oltersdorf, T. et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Maiuri, M. C. et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26, 2527–2539 (2007)

    Article  CAS  Google Scholar 

  28. Kissova, I., Deffieu, M., Manon, S. & Camougrand, N. Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 279, 39068–39074 (2004)

    Article  CAS  Google Scholar 

  29. Tal, R., Winter, G., Ecker, N., Klionsky, D. J. & Abeliovich, H. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J. Biol. Chem. 282, 5617–5624 (2007)

    Article  CAS  Google Scholar 

  30. Tatsuta, T. & Langer, T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J. 27, 306–314 (2008)

    Article  CAS  Google Scholar 

  31. Koury, S. T., Koury, M. J. & Bondurant, M. C. Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts. J. Cell Biol. 109, 3005–3013 (1989)

    Article  CAS  Google Scholar 

  32. Mok, H., Mendoza, M., Prchal, J. T., Balogh, P. & Schumacher, A. Dysregulation of ferroportin 1 interferes with spleen organogenesis in polycythaemia mice. Development 131, 4871–4881 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Huang, D. Yoon, A. Syed and D. Townley for technical assistance, and M. Andreeff for ABT-737. This work was supported by grants from the American Society of Hematology (M.C.), the American Heart Association (M.C.) and the NIH (J.W. and J.T.P.), a VA Merit grant (P.T.) and by a Ruth L. Kirschstein National Research Service Award (H.S.).

Author Contributions H.S. conducted the majority of the experiments, supervised by J.W. and M.C.; P.T. stained spleen sections and blood smears; S.K.D. measured osmotic fragility and assisted with biotin and CMFDA labelling; A.S. performed RT–PCR for Epo; J.T.P. and P.T. provided experimental advice; M.C. and J.W. generated the Nix-/- mice, designed experiments and prepared the manuscript; and all authors edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Chen or Jin Wang.

Supplementary information

Supplementary information

This file contains Supplementary Table 1 and Supplementary Figures 1-9 with Legends. (PDF 3619 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandoval, H., Thiagarajan, P., Dasgupta, S. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008). https://doi.org/10.1038/nature07006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07006

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing