Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder

Subjects

Abstract

Bipolar disorder (BD) is a heritable neuropsychiatric disorder with largely unknown pathogenesis. Given their prominent role in brain function and disease, we hypothesized that microRNAs (miRNAs) might be of importance for BD. Here we show that levels of miR-34a, which is predicted to target multiple genes implicated as genetic risk factors for BD, are increased in postmortem cerebellar tissue from BD patients, as well as in BD patient-derived neuronal cultures generated by reprogramming of human fibroblasts into induced neurons or into induced pluripotent stem cells (iPSCs) subsequently differentiated into neurons. Of the predicted miR-34a targets, we validated the BD risk genes ankyrin-3 (ANK3) and voltage-dependent L-type calcium channel subunit beta-3 (CACNB3) as direct miR-34a targets. Using human iPSC-derived neuronal progenitor cells, we further show that enhancement of miR-34a expression impairs neuronal differentiation, expression of synaptic proteins and neuronal morphology, whereas reducing endogenous miR-34a expression enhances dendritic elaboration. Taken together, we propose that miR-34a serves as a critical link between multiple etiological factors for BD and its pathogenesis through the regulation of a molecular network essential for neuronal development and synaptogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 4
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ketter TA . Diagnostic features, prevalence, and impact of bipolar disorder. J Clin Psychiatry 2010; 71: e14.

    Article  PubMed  Google Scholar 

  2. Craddock N, Sklar P . Genetics of bipolar disorder. Lancet 2013; 381: 1654–1662.

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS . A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 2003; 9: 1274–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krol J, Loedige I, Filipowicz W . The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genetics 2010; 11: 597–610.

    Article  CAS  PubMed  Google Scholar 

  6. Mellios N, Sur M . The emerging role of microRNAs in schizophrenia and autism spectrum disorders. Front Psychiatry 2012; 3: 39.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schratt G . microRNAs at the synapse. Nat Rev Neurosci 2009; 10: 842–849.

    Article  CAS  PubMed  Google Scholar 

  8. Green MJ, Cairns MJ, Wu J, Dragovic M, Jablensky A, Tooney PA et al. Genome-wide supported variant MIR137 and severe negative symptoms predict membership of an impaired cognitive subtype of schizophrenia. Mol Psychiatry 2013; 18: 774–780.

    Article  CAS  PubMed  Google Scholar 

  9. Miller BH, Wahlestedt C . MicroRNA dysregulation in psychiatric disease. Brain Res 2010; 1338: 89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O'Connor RM, Dinan TG, Cryan JF . Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol Psychiatry 2012; 17: 359–376.

    Article  CAS  PubMed  Google Scholar 

  11. Xu B, Karayiorgou M, Gogos JA . MicroRNAs in psychiatric and neurodevelopmental disorders. Brain Res 2010; 1338: 78–88.

    Article  CAS  PubMed  Google Scholar 

  12. Fenelon K, Mukai J, Xu B, Hsu PK, Drew LJ, Karayiorgou M et al. Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci USA 2011; 108: 4447–4452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fenelon K, Xu B, Lai CS, Mukai J, Markx S, Stark KL et al. The pattern of cortical dysfunction in a mouse model of a schizophrenia-related microdeletion. J Neurosci 2013; 33: 14825–14839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stark KL, Xu B, Bagchi A, Lai WS, Liu H, Hsu R et al. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genetics 2008; 40: 751–760.

    Article  CAS  PubMed  Google Scholar 

  15. Xu B, Hsu PK, Stark KL, Karayiorgou M, Gogos JA . Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion. Cell 2013; 152: 262–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Psychiatric GWAS Consortium Bipolar Disorder Working Group: Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genetics 2011; 43: 977–983.

    Article  CAS  Google Scholar 

  17. Muinos-Gimeno M, Espinosa-Parrilla Y, Guidi M, Kagerbauer B, Sipila T, Maron E et al. Human microRNAs miR-22, miR-138-2, miR-148a, and miR-488 are associated with panic disorder and regulate several anxiety candidate genes and related pathways. Biol Psychiatry 2011; 69: 526–533.

    Article  CAS  PubMed  Google Scholar 

  18. Saba R, Schratt GM . MicroRNAs in neuronal development, function and dysfunction. Brain Res 2010; 1338: 3–13.

    Article  CAS  PubMed  Google Scholar 

  19. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium: Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genetics 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  20. Kwon E, Wang W, Tsai LH . Validation of schizophrenia-associated genes CSMD1, C10orf26, CACNA1C and TCF4 as miR-137 targets. Mol Psychiatry 2013; 18: 11–12.

    Article  CAS  PubMed  Google Scholar 

  21. Cummings E, Donohoe G, Hargreaves A, Moore S, Fahey C, Dinan TG et al. Mood congruent psychotic symptoms and specific cognitive deficits in carriers of the novel schizophrenia risk variant at MIR-137. Neurosci Lett 2013; 532: 33–38.

    Article  CAS  PubMed  Google Scholar 

  22. Lett TA, Chakavarty MM, Felsky D, Brandl EJ, Tiwari AK, Goncalves VF et al. The genome-wide supported microRNA-137 variant predicts phenotypic heterogeneity within schizophrenia. Mol Psychiatry 2013; 18: 443–450.

    Article  CAS  PubMed  Google Scholar 

  23. Ripke S, O'Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genetics 2013; 45: 1150–1159.

    Article  CAS  PubMed  Google Scholar 

  24. Hunsberger JG, Fessler EB, Chibane FL, Leng Y, Maric D, Elkahloun AG et al. Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: identifying associations and functions. Am J Transl Res 2013; 5: 450–464.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A, Wei Y et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 2009; 34: 1395–1405.

    Article  CAS  PubMed  Google Scholar 

  26. Agostini M, Tucci P, Steinert JR, Shalom-Feuerstein R, Rouleau M, Aberdam D et al. microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Natl Acad Sci USA 2011; 108: 21099–21104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agostini M, Tucci P, Killick R, Candi E, Sayan BS, Rivetti di Val Cervo P et al. Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proc Natl Acad Sci USA 2011; 108: 21093–21098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chi SW, Zang JB, Mele A, Darnell RB . Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460: 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wibrand K, Pai B, Siripornmongcolchai T, Bittins M, Berentsen B, Ofte ML et al. MicroRNA regulation of the synaptic plasticity-related gene Arc. PLoS One 2012; 7: e41688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Muhleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F, Treutlein J et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun 2014; 5: 3339.

    Article  PubMed  Google Scholar 

  31. Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One 2011; 6: e26203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Molecular Psychiatry 2015 (in press).

  33. Spitzer RL, Williams JB, Gibbon M, First MB . The structured clinical interview for DSM-III-R (SCID). I: History, rationale, and description. Arch Gen Psychiatry 1992; 49: 624–629.

    Article  CAS  PubMed  Google Scholar 

  34. Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 2011; 476: 228–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dweep H, Sticht C, Pandey P, Gretz N . miRWalk—database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Informatics 2011; 44: 839–847.

    Article  CAS  Google Scholar 

  36. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34: D140–D144.

    Article  CAS  PubMed  Google Scholar 

  37. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genetics 2005; 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  38. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  PubMed  Google Scholar 

  39. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 2009; 37: W273–W276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 2006; 126: 1203–1217.

    Article  CAS  PubMed  Google Scholar 

  41. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R . Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10: 1507–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang X . miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 2008; 14: 1012–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang da W, Sherman BT, Tan Q, Kir J, Liu D, Bryant D et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007; 35: W169–W175.

    Article  PubMed  Google Scholar 

  44. Gershon ES, Grennan K, Busnello J, Badner JA, Ovsiew F, Memon S et al. A rare mutation of CACNA1C in a patient with bipolar disorder, and decreased gene expression associated with a bipolar-associated common SNP of CACNA1C in brain. Mol Psychiatry 2013; 19: 890–894.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rueckert EH, Barker D, Ruderfer D, Bergen SE, O'Dushlaine C, Luce CJ et al. Cis-acting regulation of brain-specific ANK3 gene expression by a genetic variant associated with bipolar disorder. Mol Psychiatry 2013; 18: 922–929.

    Article  CAS  PubMed  Google Scholar 

  46. Baldacara L, Nery-Fernandes F, Rocha M, Quarantini LC, Rocha GG, Guimaraes JL et al. Is cerebellar volume related to bipolar disorder? J Affect Disord 2011; 135: 305–309.

    Article  CAS  PubMed  Google Scholar 

  47. Buckner RL . The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 2013; 80: 807–815.

    Article  CAS  PubMed  Google Scholar 

  48. Eker C, Simsek F, Yilmazer EE, Kitis O, Cinar C, Eker OD et al. Brain regions associated with risk and resistance for bipolar I disorder: a voxel-based MRI study of patients with bipolar disorder and their healthy siblings. Bipolar Disord 2014; 16: 249–261.

    Article  PubMed  Google Scholar 

  49. Kim D, Byul Cho H, Dager SR, Yurgelun-Todd DA, Yoon S, Lee JH et al. Posterior cerebellar vermal deficits in bipolar disorder. J Affect Disord 2013; 150: 499–506.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liang MJ, Zhou Q, Yang KR, Yang XL, Fang J, Chen WL et al. Identify changes of brain regional homogeneity in bipolar disorder and unipolar depression using resting-state FMRI. PLoS One 2013; 8: e79999.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Smolin B, Karry R, Gal-Ben-Ari S, Ben-Shachar D . Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology. Int J Neuropsychopharmacol 2012; 15: 869–882.

    Article  CAS  PubMed  Google Scholar 

  52. Soontornniyomkij B, Everall IP, Chana G, Tsuang MT, Achim CL, Soontornniyomkij V . Tyrosine kinase B protein expression is reduced in the cerebellum of patients with bipolar disorder. J Affect Disord 2011; 133: 646–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cross-Disorder Group of the Psychiatric Genomics Consortium: Smoller JW, Ripke S, Lee PH, Neale B, Nurnberger JI, Santangelo S et al. The cerebellum and neuropsychiatric disorders. Psychiatry Res 2012; 198: 527–532.

    Article  Google Scholar 

  54. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 2013; 381: 1371–1379.

  55. Chen H, Wang N, Burmeister M, McInnis MG . MicroRNA expression changes in lymphoblastoid cell lines in response to lithium treatment. Int J Neuropsychopharmacol 2009; 12: 975–981.

    Article  CAS  PubMed  Google Scholar 

  56. Du J, Wei Y, Liu L, Wang Y, Khairova R, Blumenthal R et al. A kinesin signaling complex mediates the ability of GSK-3beta to affect mood-associated behaviors. Proc Natl Acad Sci USA 2010; 107: 11573–11578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ferrandiz-Huertas C, Gil-Minguez M, Lujan R . Regional expression and subcellular localization of the voltage-gated calcium channel beta subunits in the developing mouse brain. J Neurochem 2012; 122: 1095–1107.

    Article  CAS  PubMed  Google Scholar 

  58. Huang Y, Zou Q, Song H, Song F, Wang L, Zhang G et al. A study of miRNAs targets prediction and experimental validation. Protein Cell 2010; 1: 979–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuhn DE, Martin MM, Feldman DS, Terry AV Jr ., Nuovo GJ, Elton TS . Experimental validation of miRNA targets. Methods 2008; 44: 47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aranha MM, Santos DM, Sola S, Steer CJ, Rodrigues CM . miR-34a regulates mouse neural stem cell differentiation. PLoS One 2011; 6: e21396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fineberg SK, Datta P, Stein CS, Davidson BL . MiR-34a represses Numbl in murine neural progenitor cells and antagonizes neuronal differentiation. PLoS One 2012; 7: e38562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gaughwin P, Ciesla M, Yang H, Lim B, Brundin P . Stage-specific modulation of cortical neuronal development by Mmu-miR-134. Cereb Cortex 2011; 21: 1857–1869.

    Article  PubMed  Google Scholar 

  63. Clark BA, Monsivais P, Branco T, London M, Hausser M . The site of action potential initiation in cerebellar Purkinje neurons. Nat Neurosci 2005; 8: 137–139.

    Article  CAS  PubMed  Google Scholar 

  64. Komada M, Soriano P . [Beta]IV-spectrin regulates sodium channel clustering through ankyrin-G at axon initial segments and nodes of Ranvier. J Cell Biol 2002; 156: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamaguchi H, Hara M, Strobeck M, Fukasawa K, Schwartz A, Varadi G . Multiple modulation pathways of calcium channel activity by a beta subunit. Direct evidence of beta subunit participation in membrane trafficking of the alpha1C subunit. J Biol Chem 1998; 273: 19348–19356.

    Article  CAS  PubMed  Google Scholar 

  66. Kremerskothen J, Kindler S, Finger I, Veltel S, Barnekow A . Postsynaptic recruitment of Dendrin depends on both dendritic mRNA transport and synaptic anchoring. J Neurochem 2006; 96: 1659–1666.

    Article  CAS  PubMed  Google Scholar 

  67. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S . A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genetics 2008; 17: 3030–3042.

    Article  CAS  Google Scholar 

  68. Liu H, Kohane IS . Tissue and process specific microRNA-mRNA co-expression in mammalian development and malignancy. PLoS One 2009; 4: e5436.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Osella M, Bosia C, Cora D, Caselle M . The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 2011; 7: e1001101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hashimi ST, Fulcher JA, Chang MH, Gov L, Wang S, Lee B . MicroRNA profiling identifies miR-34a and miR-21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differentiation. Blood 2009; 114: 404–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim NH, Kim HS, Kim NG, Lee I, Choi HS, Li XY et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 2011; 4: ra71.

    PubMed  PubMed Central  Google Scholar 

  72. Durak O, de Anda FC, Singh KK, Leussis MP, Petryshen TL, Sklar P et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of beta-catenin. Mol Psychiatry 2014 advance online publication, 13 May 2014; doi:10.1038/mp.2014.42.

  73. Stoodley CJ, Schmahmann JD . Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010; 46: 831–844.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y . Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS One 2014; 9: e86469.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL et al. MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res 2010; 124: 183–191.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Stanley Medical Research Institute (Dr Maree Webster) for providing RNA and tissue samples from their postmortem human brain collection, the Crabtree laboratory, especially Dr Alfred Sun, for contributing plasmids and help with the iN protocol and Dr Colm O’Dushlaine for his help with miR-34a target prediction. This work was supported through funding from the Swiss National Science Foundation, the Stanley Medical Research Institute and the National Institute of Mental Health (R21MH093958, R33MH087896, R01MH091115, R01MH095088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Haggarty.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavamian, S., Mellios, N., Lalonde, J. et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry 20, 573–584 (2015). https://doi.org/10.1038/mp.2014.176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.176

This article is cited by

Search

Quick links