Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder

Abstract

The ability to regulate emotions is an important part of adaptive functioning in society. Advances in cognitive and affective neuroscience and biological psychiatry have facilitated examination of neural systems that may be important for emotion regulation. In this critical review we first develop a neural model of emotion regulation that includes neural systems implicated in different voluntary and automatic emotion regulatory subprocesses. We then use this model as a theoretical framework to examine functional neural abnormalities in these neural systems that may predispose to the development of a major psychiatric disorder characterized by severe emotion dysregulation, bipolar disorder.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Phillips ML, Drevets WC, Rauch SL, Lane R . Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 2003; 54: 504–514.

    Article  PubMed  Google Scholar 

  2. Hasler G, Drevets WC, Gould T, Gottesman I, Manji H . Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 2005; 60: 93–105.

    Article  Google Scholar 

  3. Phillips ML, Frank E . Redefining bipolar disorder: toward DSM-V. Am J Psychiatry 2006; 163: 1135–1136.

    Article  PubMed  Google Scholar 

  4. Charney DS, Barlow DH, Botteron K, Cohen JD, Goldman D, Gur RE et al. Neuroscience research agenda to guided development of a pathophysiologically based classification system. In: Kupfer DJ, First MB, Regier DA (eds). A Research Agenda for DSM-V. American Psychiatric Association: Washington, DC, 2002, pp 31–83.

    Google Scholar 

  5. Bowden CL . Strategies to reduce misdiagnosis of bipolar depression. Psychiatr Serv 2001; 52: 51–55.

    Article  CAS  PubMed  Google Scholar 

  6. Bowden CL . A different depression: clinical distinctions between bipolar and unipolar depression. J Affect Disord 2005; 84: 117–125.

    Article  PubMed  Google Scholar 

  7. Krawczyk DC . Contributions of the prefrontal cortex to the neural basis of human decision making. Neurosci Biobehav Rev 2002; 26: 631–664.

    Article  PubMed  Google Scholar 

  8. Fuster JM . Frontal lobe and cognitive development. J Neurocytol 2002; 31: 375–383.

    Article  Google Scholar 

  9. Öngür D, Price JL . The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000; 10: 206–219.

    Article  PubMed  Google Scholar 

  10. Petrides M, Pandya DN . Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 1999; 11: 1011–1036.

    Article  CAS  PubMed  Google Scholar 

  11. Petrides M, Pandya DN . Comparative cytoarchitectonic analysis of the human and the macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey. Eur J Neurosci 2002; 16: 291–310.

    Article  CAS  PubMed  Google Scholar 

  12. Reverberi C, Cherubini P, Rapisarda A, Rigamonti F, Caltagirone C, Frackowiak RS et al. Neural basis of generation of conclusions in elementary deduction. Neuroimage 2007; 38: 752–762.

    Article  PubMed  Google Scholar 

  13. Procyk E, Goldman-Rakic PS . Modulation of dorsolateral prefrontal delay activity in self-organized behavior. J Neurosci 2006; 26: 11313–11323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghashghaei HT, Hilgetag CC, Barbas H . Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 2007; 34: 905–923.

    Article  CAS  PubMed  Google Scholar 

  15. Rolls ET . The orbitofrontal cortex. Philos Trans R Soc Lond B Biol Sci 1996; 351: 1143–1433.

    Google Scholar 

  16. Stein JL, Wiedholz LM, Bassett DS, Weinberger DR, Zink CF, Mattay VS et al. A validated network of effective amygdala connectivity. Neuroimage 2007; 36: 736–745.

    Article  PubMed  Google Scholar 

  17. Lange K, Williams LM, Young AW, Bullmore ET, Brammer MJ, Williams SCR et al. Task instructions modulate neural responses to fearful facial expressions. Biol Psychiatry 2003; 53: 226–232.

    Article  PubMed  Google Scholar 

  18. Hariri AR, Bookheimer SY, Mazziotta JC . Modulating emotional responses: effects of a neocortical network on the limbic system. Neuroreport 2000; 11: 43–48.

    Article  CAS  PubMed  Google Scholar 

  19. Lieberman MD, Hariri A, Jarcho JJ, Eisenberger NI, Bookheimer SY . An fMRI investigation of race-related amygdala activity in African-American and Caucasian-American individuals. Nat Neurosci 2005; 8: 720–722.

    Article  CAS  PubMed  Google Scholar 

  20. Lieberman MD, Eisenberger NI, Crockett MJ, Tom SM, Pfeifer JH, Way BM . Putting feelings into words: affect labeling disrupts amygdala activity in response to affective stimuli. Psychol Sci 2007; 18: 421–428.

    Article  PubMed  Google Scholar 

  21. Kim H, Somerville LH, Johnstone T, Alexander AL, Whalen PJ . Inverse amygdala and medial prefrontal cortex responses to surprised faces. Neuroreport 2003; 14: 2317–2322.

    Article  PubMed  Google Scholar 

  22. Kim H, Somerville LH, Johnstone T, Polis S, Alexander AL, Shin LM et al. Contextual modulation of amygdala responsivity to surprised faces. J Cogn Neurosci 2004; 16: 1730–1745.

    Article  PubMed  Google Scholar 

  23. Das P, Kemp AH, Liddell BJ, Brown KJ, Olivieri G, Peduto A et al. Pathways for fear perception: modulation of amygdala activity by thalamo-cortical systems. Neuroimage 2005; 26: 141–148.

    Article  PubMed  Google Scholar 

  24. Thompson RA . Emotion regulation: a theme in search of definition. In: Fox NA (ed). The Development of Emotion Regulation: Biological and Behavioral Considerations 1994, University of Chicago Press: Chicago, IL, pp 25–52.

    Article  Google Scholar 

  25. Gross JJ, Thompson RA . Emotion regulation: conceptual foundations. In: Gross JJ (ed). Handbook of Emotion Regulation. Guilford Press: New York, 2007, pp 3–24.

    Google Scholar 

  26. Ochsner KN, Gross JJ . The neural architecture of emotion regulation. In: Gross JJ (ed). Handbook of Emotion Regulation. Guilford Press: New York, 2007, pp 87–109.

    Google Scholar 

  27. Ochsner KN, Gross JJ . Thinking makes it so: a social cognitive neuroscience approach to emotion regulation. In: Baumeister RF, Vohs KD (ed). Handbook of Self-Regulation: Research, Theory, and Applications. Guildford Press: New York, 2004, pp 229–255.

    Google Scholar 

  28. Ochsner KN, Gross JJ . The cognitive control of emotion. Trends Cogn Sci 2005; 9: 242–249.

    Article  PubMed  Google Scholar 

  29. Phillips ML, Drevets WC, Rauch SL, Lane R . Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry 2003; 54: 515–528.

    Article  PubMed  Google Scholar 

  30. Drevets WC . Orbitofrontal cortex function and structure in depression. Ann NY Acad Sci 2007; 1121: 499–527.

    Article  PubMed  Google Scholar 

  31. Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P . Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 2001; 30: 619–639.

    CAS  PubMed  Google Scholar 

  32. Delgado MR, Miller MM, Inati S, Phelps EA . An fMRI study of reward-related probability learning. Neuroimage 2005; 24: 862–873.

    Article  CAS  PubMed  Google Scholar 

  33. Gross JJ, Levenson RW . Hiding feelings: the acute effects of inhibiting negative and positive emotion. J Abnorm Psychol 1997; 106: 95–103.

    Article  CAS  PubMed  Google Scholar 

  34. Gross JJ, Sutton SK, Ketelaar TV . Relations between affect and personality: support for the affect-level and affective–reactivity views. Pers Soc Psychol Bull 1998; 24: 279–288.

    Article  Google Scholar 

  35. Gross JJ . Emotion regulation: affective, cognitive, and social consequences. Psychophysiology 2002; 39: 281–291.

    Article  PubMed  Google Scholar 

  36. Hagemann T, Levenson RW, Gross JJ . Expressive suppression during an acoustic start. Psychophysiology 2006; 43: 104–112.

    Article  PubMed  Google Scholar 

  37. Gross JJ, Levenson RW . Emotional suppression: physiology, self-report, and expressive behavior. J Pers Soc Psychol 1993; 64: 970–986.

    Article  CAS  PubMed  Google Scholar 

  38. Goldsmith HH, Davidson RJ . Disambiguating the components of emotion regulation. Child Dev 2004; 75: 361–365.

    Article  CAS  PubMed  Google Scholar 

  39. Goodwin FK, Jamison KR . Manic-Depressive Illness. Oxford University Press: Oxford, 1990.

    Google Scholar 

  40. Goldin PR, McRae K, Ramel W, Gross JJ . The neural bases of emotion regulation: reappraisal and suppression of negative emotion. Biol Psychiatry 2008; 63: 577–586.

    Article  PubMed  Google Scholar 

  41. Beauregard M, Levesque J, Bourgouin P . Neural correlates of conscious self-regulation of emotion. J Neurosci 2001; 21: 1–6.

    Article  Google Scholar 

  42. Levesque J, Eugene F, Joanette Y, Paquette V, Mensour B, Beaudoin G et al. Neural circuitry underlying voluntary suppression of sadness. Biol Psychiatry 2002; 53: 502–510.

    Article  Google Scholar 

  43. Ohira H, Nomura M, Ichikawa N, Isowa T, Iidaka T, Sato A et al. Association of neural and physiological responses during voluntary emotion suppression. Neuroimage 2006; 29: 721–733.

    Article  PubMed  Google Scholar 

  44. Gillath O, Bunge SA, Shaver PR, Wendelken C, Mikulincer M . Attachment-style differences in the ability to suppress negative thoughts: exploring the neural correlates. Neuroimage 2005; 28: 835–847.

    Article  PubMed  Google Scholar 

  45. Goldstein M, Brendel G, Tuescher O, Pan H, Epstein J, Beutel M et al. Neural substrates of the interaction of emotional stimulus processing and motor inhibitory control: an emotional linguistic go/no-go fMRI study. Neuroimage 2007; 36: 1026–1040.

    Article  PubMed  Google Scholar 

  46. Erk S, Kleczar A, Walter H . Valence-specific regulation effects in a working memory task with emotional context. Neuroimage 2007; 37: 623–632.

    Article  PubMed  Google Scholar 

  47. Perlstein WM, Elbert T, Stenger VA . Dissociation in human prefrontal cortex of affective influences on working memory-related activity. Proc Natl Acad Sci USA 2002; 99: 1736–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo Q, Mitchell D, Jones M, Mondillo K, Vythilingam M, James R et al. Common regions of dorsal anterial cingulate and prefrontal-parietal cortices provide attentional control of distracters varying in emotionality and visibility. Neuroimage 2007; 38: 631–639.

    Article  PubMed  Google Scholar 

  49. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JDE . Rethinking feelings: an fMRI study of the cognitive regulation of emotion. J Cogn Neurosci 2002; 14: 1215–1229.

    Article  PubMed  Google Scholar 

  50. Phan KL, Fitzgerald DA, Nathan PJ, Moore GJ, Uhde TW, Tancer ME . Neural substrates for voluntary suppression of negative affect: a functional magnetic resonance imaging study. Biol Psychiatry 2005; 57: 210–219.

    Article  PubMed  Google Scholar 

  51. Banks SJ, Eddy KT, Angstadt M, Pradeep NJ, Phan LK . Amygdala-frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci 2007; 2: 303–312.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Urry H, van Reekum C, Johnstone T, Kalin N, Thurow M, Schaefer H et al. Amygdala and ventromedial prefrontal cortex are inversely coupled during regulation of negative affect and predict the diurnal pattern of cortisol secretion among older adults. J Neurosci 2006; 26: 4415–4425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Corlett P, Aitken M, Dickinson A, Shanks D, Honey G, Honey R et al. Prediction error during retrospective revaluation of causal associations in humans: fMRI evidence in favor of an associative model of learning. Neuron 2004; 44: 877–888.

    CAS  PubMed  Google Scholar 

  54. Rosenkranz JA, Moore H, Grace AA . The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 2003; 23: 11054–11064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vidal-Gonzalez IB, Rauch SL, Quirk GJ . Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 2006; 13: 728–733.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Milad MR, Quirk GJ . Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 2002; 420: 70–74.

    Article  CAS  PubMed  Google Scholar 

  57. Morgan MA, Schulkin J, LeDoux JE . Ventral medial prefrontal cortex and emotional perseveration: the memory for prior extinction training. Behav Brain Res 2003; 146: 121–130.

    Article  PubMed  Google Scholar 

  58. McGinty VB, Grace AA . Selective activation of medial prefrontal-to-accumbens projection neurons by amygdala stimulation and Pavlovian conditioned stimuli. Cereb Cortex 2007; doi:10:1093/ccrcor/bhm223: 1–12.

  59. Phelps EA, Delgado MR, Nearing KI, LeDoux JE . Extinction learning in humans: role of the amygdala and VMPFC. Neuron 2004; 43: 897–905.

    Article  CAS  PubMed  Google Scholar 

  60. Gottfried JA, Dolan RJ . Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nat Neurosci 2004; 7: 1144–1152.

    Article  CAS  PubMed  Google Scholar 

  61. Milad MR, Quirk GJ, Pitman RK, Orr SP, Fischl B, Rauch SL . A role for the human dorsal anterior cingulate cortex in fear expression. Biol Psychiatry 2007; 62: 1191–1194.

    Article  PubMed  Google Scholar 

  62. Armony JL, Dolan RJ . Modulation of spatial attention by fear-conditioned stimuli: an event-related fMRI study. Neuropsychologia 2002; 40: 817–826.

    Article  PubMed  Google Scholar 

  63. Pourtois G, Schwartz S, Seghier ML, Lazeyras F, Vuilleumier P . Neural systems for orienting attention to the location of threat signals: an event-related fMRI study. Neuroimage 2006; 31: 920–933.

    Article  PubMed  Google Scholar 

  64. Whalen PJ, Bush G, McNally RJ, Wilhelm S, McInerney SC, Jenike MA et al. The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biol Psychiatry 1998; 44: 1219–1228.

    Article  CAS  PubMed  Google Scholar 

  65. Blair KS, Smith BW, Mitchell DG . Modulation of emotion by cognition and cognition by emotion. Neuroimage 2007; 35: 430–440.

    Article  CAS  PubMed  Google Scholar 

  66. Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J . Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 2006; 51: 871–882.

    Article  CAS  PubMed  Google Scholar 

  67. Vuilleumier P, Armony JL . Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron 2001; 30: 829–841.

    Article  CAS  PubMed  Google Scholar 

  68. Pessoa L, Padmala S, Morland T . Fate of the unattended fearful faces in the amygdala is determined by both attentional resources and cognitive modulation. Neuroimage 2005; 28: 249–255.

    Article  PubMed  Google Scholar 

  69. Phillips ML, Williams LM, Heining M, Herba CM, Russell T, Andrew C et al. Differential neural responses to overt and covert presentations of facial expressions of fear and disgust. Neuroimage 2004; 21: 1484–1496.

    Article  PubMed  Google Scholar 

  70. Williams LM, Das P, Liddell BJ, Kemp AH, Rennie CJ, Gordon E . Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear. J Neurosci 2006; 26: 9264–9271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hunkin NM, Mayes AR, Gregory LJ, Nicholas AK, Nunn JA, Brammer MJ et al. Novelty-related activation within the medial temporal lobes. Neuropsychologia 2002; 40: 1456–1464.

    Article  PubMed  Google Scholar 

  72. van Veen V, Carter CS . The timing of action-monitoring processes in the anterior cingulate cortex. J Cogn Neurosci 2002; 14: 593–602.

    Article  PubMed  Google Scholar 

  73. Luks TL, Simpson GV, Dale CL, Hough MG . Preparatory allocation of attention and adjustments in conflict processing. Neuroimage 2007; 35: 949–958.

    Article  PubMed  Google Scholar 

  74. Bechara A, Damasio AR, Damasio H, Anderson SW . Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994; 50: 7–15.

    Article  CAS  PubMed  Google Scholar 

  75. Ernst M, Bolla K, Mouratidis M, Contoreggi C, Matochik JA, Kurian V et al. Decision-making in a risk-taking task: a PET study. Neuropsychopharmacology 2002; 26: 682–691.

    Article  PubMed  Google Scholar 

  76. Fukui H, Murai T, Fukuyama H, Hayashi T, Hanakawa T . Functional activity related to risk anticipation during performance of the Iowa Gambling Task. Neuroimage 2005; 24: 253–259.

    Article  PubMed  Google Scholar 

  77. Lawrence NS, Jollant F, O'Daly O, Zelaya F, Phillips ML . Distinct roles of prefrontal cortical subregions during the Iowa gambling task. Cereb Cortex (in press).

  78. Beauregard M, Levesque P, Paquette V . Neural basis of conscious and voluntary self-regulation of emotion. In: Beauregard M (ed). Consciousness, Emotional Self-Regulation and the Brain. John Benjamins: Amsterdam, 2004, pp 163–194.

    Chapter  Google Scholar 

  79. Beauregard M . Mind does really matter: evidence from neuroimaging studies of emotional self-regulation, psychotherapy, and placebo effect. Prog Neurobiol 2007; 81: 218–236.

    Article  PubMed  Google Scholar 

  80. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suare F . The anatomical connections of the macaque monkey orbitofrontal cortex. Cereb Cortex 2000; 10: 220–242.

    Article  CAS  PubMed  Google Scholar 

  81. Watanabe M . Reward expectancy in primate prefrontal neurons. Nature 1996; 382: 629–632.

    Article  CAS  PubMed  Google Scholar 

  82. Fletcher PC, Anderson JM, Shanks DR, Honey R, Carpenter TA, Donovan T et al. Responses of human frontal cortex to surprising events are predicted by formal associative learning theory. Nat Neurosci 2001; 4: 1043–1048.

    Article  CAS  PubMed  Google Scholar 

  83. Corlett PR, Murray GK, Honey GD, Aitken MRF, Shanks DR, Robbins TW et al. Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain 2007; 130: 2387–2400.

    Article  CAS  PubMed  Google Scholar 

  84. Kalisch R, Wiech K, Herrmann K, Dolan RJ . Neural correlates of self-distraction from anxiety and a process model of cognitive emotional regulation. J Cogn Neurosci 2006; 18: 1266–1276.

    Article  PubMed  PubMed Central  Google Scholar 

  85. McDonald AJ, Mascagni F, Guo L . Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 1996; 71: 55–75.

    CAS  PubMed  Google Scholar 

  86. Öngür D, Ferry AT, Price JL . Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 2003; 460: 425–449.

    Article  PubMed  Google Scholar 

  87. Morgan M, Romanski L, LeDoux J . Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 1993; 163: 109–113.

    Article  CAS  PubMed  Google Scholar 

  88. Rhodes SEV, Killcross AS . Lesions of rat infralimbic cortex result in disrupted retardation but normal summation test performance following training on a Pavlovian conditioned inhibition procedure. Eur J Neurosci 2007; 26: 2654–2660.

    Article  CAS  PubMed  Google Scholar 

  89. Delgado MR, Olsson A, Phelps EA . Extending animal models of fear conditioning to humans. Biol Psychol 2006; 73: 39–48.

    Article  CAS  PubMed  Google Scholar 

  90. Price JL . Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann NY Acad Sci 2007; 1121: 54–71.

    Article  PubMed  Google Scholar 

  91. Kalin NH, Shelton SE, Davidson RJ . Role of the primate orbitofrontal cortex in mediating anxious temperament. Biol Psychiatry 2007; 62: 1134–1139.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mayberg HS . Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 1999; 156: 675–682.

    CAS  PubMed  Google Scholar 

  93. Mayberg HS . Deep brain stimulation for treatment-resistant depression. Neuron 2005; 45: 651–660.

    CAS  PubMed  Google Scholar 

  94. Kennedy SH, Konarski JZ, Segal ZV, Lau MA, Bieling PJ, McIntyre RS et al. Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry 2007; 164: 778–788.

    Article  PubMed  Google Scholar 

  95. Mogg K, Bradley BP, Williams R . Attentional bias in anxiety and depression: the role of awareness. Br J Clin Psychol 1995; 34: 17–36.

    Article  PubMed  Google Scholar 

  96. Pessoa L, McKenna M, Gutierrez E, Ungerleider LG . Neural processing of emotional faces requires attention. Proc Natl Acad Sci 2002; 99: 11458–11463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Morris JS, Friston KJP CJ, Buchel C, Frith CD, Young AW, Calder AJ et al. A neuromodulatory role of the human amygdala in processing emotional facial expressions. Brain 1998; 121: 47–57.

    Article  PubMed  Google Scholar 

  98. Whalen PJ, Rauch SL, Etcoff NL, McInerney SC, Lee MB, Jenike MA . Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. J Neurosci 1998; 18: 411–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gray JA, McNaughton N . The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System, 2nd edn. Oxford University Press: Oxford, 2000.

    Google Scholar 

  100. Stefanacci L, Suzuki WA, Amaral DG . Organization of connections between amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J Comp Neurol 1996; 375: 552–582.

    Article  CAS  PubMed  Google Scholar 

  101. Schroeder U, Hennenlotter A, Erhard P, Haslinger B, Stahl R, Lange KW et al. Functional neuroanatomy of perceiving surprised faces. Hum Brain Mapp 2004; 23: 181–187.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Botvinick MM, Cohen JD, Carter CS . Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 2004; 8: 539–546.

    Article  PubMed  Google Scholar 

  103. Bechara A, Van Der L . Decision-making and impulse control after frontal lobe injuries. Curr Opin Neurol 2005; 18: 734–739.

    Article  PubMed  Google Scholar 

  104. Burgess PW, Gilbert SJ, Dumontheil I . Functional and localization within rostral prefrontal cortex (BA10). Philos Trans R Soc Lond B Biol Sci 2007; 362: 887–889.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sanides F . Functional Architecture of Motor and Sensory Cortices in Primates in the Light of a New Concept of Neocortex Evolution. Appleton-Century-Crofts: New York, 1970.

    Google Scholar 

  106. Altshuler LL, Bartzokis G, Grieder T, Curran J, Mintz J . Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: an MRI study demonstrating neuroanatomic specificity. Arch Gen Psychiatry 1998; 55: 663–664.

    CAS  PubMed  Google Scholar 

  107. Brambilla P, Harenski K, Nicoletti M, Sassi RB, Mallinger AG, E F et al. MRI investigation of temporal lobe structures in bipolar patients. J Psychiatr Res 2003; 37: 287–295.

    Article  PubMed  Google Scholar 

  108. Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824–827.

    Article  CAS  PubMed  Google Scholar 

  109. Lochhead RA, Parsey RV, Oquendo MA, Mann JJ . Regional brain gray matter volume differences in patients with bipolar disorder as assessed by Optimized voxel-based morphometry. Biol Psychiatry 2004; 55: 1154–1162.

    Article  PubMed  Google Scholar 

  110. Sassi R, Brambilla P, Hatch J, Nicoletti M, Mallinger A, Frank E et al. Reduced left anterior cingulate volumes in untreated bipolar patients. Biol Psychiatry 2004; 56: 467–475.

    Article  PubMed  Google Scholar 

  111. Lyoo IK, Kim MJ, Stoll AL, Demopulos CM, Parow AM, Dager SR et al. Frontal lobe gray matter density decreases in bipolar I disorder. Biol Psychiatry 2004; 55: 648–651.

    Article  PubMed  Google Scholar 

  112. Bruno SD, Barker GJ, Cercignani M, Symms M, Ron MA . A study of bipolar disorder using magnetization transfer imaging and voxel-based morphometry. Brain 2004; 127: 2433–2440.

    Article  CAS  PubMed  Google Scholar 

  113. Frangou S . The Maudsley bipolar disorder project. Epilepsia 2005; 46: 19–25.

    Article  PubMed  Google Scholar 

  114. Lopez-Larson MP, DelBello MP, Zimmerman ME, Schwiers ML, Strakowski SM . Regional prefrontal gray and white matter abnormalities in bipolar disorder. Biol Psychiatry 2002; 52: 93–100.

    Article  PubMed  Google Scholar 

  115. Sharma V, Menon R, Carr TJ, Densmore M, Mazmania D, Williamson PC . An MRI study of subgenual prefrontal cortex in patients with familial and non-familial bipolar I disorder. J Affect Disord 2003; 77: 167–171.

    Article  PubMed  Google Scholar 

  116. Adler CM, Levine AD, Delbello MP, Strakowski SM . Changes in gray matter volume in patients with bipolar disorder. Biol Psychiatry 2005; 58: 151–157.

    Article  PubMed  Google Scholar 

  117. Brambilla P, Nicoletti M, Harenski K, Sassi RB, Mallinger AG, Frank E et al. Anatomical MRI study of subgenual prefrontal cortex in bipolar and unipolar subjects. Neuropsychopharmacology 2002; 27: 792–799.

    Article  PubMed  Google Scholar 

  118. Nugent AC, Milham MP, Bain EE, Mah L, Cannon DM, Marrett S et al. Cortical abnormalities in bipolar disorder investigated with MRI and voxel-based morphometry. Neuroimage 2006; 30: 485–497.

    Article  PubMed  Google Scholar 

  119. Farrow T, Whitford T, Williams LL, Gomes L, Harris A . Diagnosis-related regional gray matter loss over two years in first episode schizophrenia and bipolar disorder. Biol Psychiatry 2005; 58: 713–723.

    Article  PubMed  Google Scholar 

  120. McDonald C, Bullmore ET, Sham P, Chitnis X, Wickham H, Bramon E et al. Association of genetic risks for schizophrenia and bipolar disorder with specific and generic brain structural endophenotypes. Arch Gen Psychiatry 2004; 61: 974–984.

    Article  PubMed  Google Scholar 

  121. Fornito A, Malhi GS, Lagopoulos J, Ivanovski B, Wood SJ, Saling MM et al. Anatomical abnormalities of the anterior cingulate and paracingulate cortex in patients with bipolar I disorder. Psychiatry Res 2008; 162: 123–132.

    Article  PubMed  Google Scholar 

  122. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarjo S . Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 2002; 22: 6810–6818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McEwen BS, Magarinos AM . Stress and hippocampal plasticity: implications for the pathophysiology of affective disorders. Hum Psychopharmacol 2001; 16: S7–S19.

    Article  CAS  PubMed  Google Scholar 

  124. Radley JJ, Rocher AB, Rodriguez A, Ehlenberger DB, Dammann M, McEwen BS et al. Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J Comp Neurol 2008; 507: 1141–1150.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Izquierdo A, Wellman CL, Holmes A . Brief uncontrollable stress causes dendric retraction in infralimbic cortex and resistance to fear extinction in mice. J Neurosci 2006; 26: 5733–5738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. McIntosh AM, Job DE, Moorhead TW, Harrison LK, Lawrie SM, Johnstone EC . White matter density in patients with schizophrenia, bipolar disorder and their unaffected relatives. Biol Psychiatry 2005; 58: 254–257.

    Article  PubMed  Google Scholar 

  127. McDonald E, Bullmore P, Sham X, Chinis J, Suckling J, MacCabe M et al. Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder: a computational morphometry study. Br J Psychol 2005; 186: 369–377.

    Article  Google Scholar 

  128. Lim KO, Rosenbloom MJ, Faustman WO, Sullivan EV, Pfefferbaum A . Cortical gray matter deficit in patients with bipolar disorder. Schizophr Res 1999; 40: 219–227.

    Article  CAS  PubMed  Google Scholar 

  129. Regenold WT, Phatak P, Marano CM, Gearhart L, Viens CH, Hisley CK . Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder and unipolar major depression. Psychiatry Res 2007; 151: 179–188.

    Article  CAS  PubMed  Google Scholar 

  130. Sokolov BP . Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies. Int J Neuropsychopharmacol 2007; 10: 547–555.

    Article  CAS  PubMed  Google Scholar 

  131. Beyer JL, Taylor WD, MacFall JR, Kuchibhatla M, Payne ME, Provenzale JM et al. Cortical white matter microstructural abnormalities in bipolar disorder. Neuropsychopharmacology 2005; 30: 2225–2229.

    Article  PubMed  Google Scholar 

  132. Haznedar MM, Roversi F, Pallanti S, Baldini-Rossi N, Schnur DB, Licalzi EM et al. Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biol Psychiatry 2005; 57: 733–742.

    Article  PubMed  Google Scholar 

  133. Houenou J, Wessa M, Douaud G, Leboyer M, Chanraud S, Perrin M et al. Increased white matter connectivity in euthymic bipolar patients: diffusion tensor tractography between the subgenual cingulate and the amygdal–hippocampal complex. Mol Psychiatry 2007; 11: 1001–1010.

    Article  Google Scholar 

  134. Adler CM, Holland SK, Schmithorst V, Wilke M, Weiss KL, Pan H et al. Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord 2004; 6: 197–203.

    Article  PubMed  Google Scholar 

  135. Altshuler LL, Bookheimer SY, Townsend J . Blunted activation in orbitofrontal cortex during mania: a functional magnetic resonance imaging study. Biol Psychiatry 2005; 58: 763–769.

    Article  PubMed  Google Scholar 

  136. Chen CH, Lennox B, Jacob R, Calder A, Lupson V, Bisbrown-Chippendale R et al. Explicit and implicit facial affect recognition in manic and depressed states of bipolar disorder: a functional magnetic resonance imaging study. Biol Psychiatry 2006; 59: 31–39.

    Article  PubMed  Google Scholar 

  137. Malhi GS, Lagopoulos J, Ward PB, Kumari V, Mitchell PB, Parker GB et al. Cognitive generation of affect in bipolar depression: an fMRI study. Eur J Neurosci 2004; 19: 741–754.

    Article  PubMed  Google Scholar 

  138. Hassel S, Almeida JRC, Kerr N, Nau S, Ladouceur CD, Fissel K et al. Elevated striatal and decreased dorsolateral prefrontal cortical activity to emotional stimuli in euthymic bipolar disorder: no associations with psychotropic medication load. Bipolar Disord 2008 (in press).

  139. Malhi GS, Lagopoulos J, Sachdev PS, Ivanovski B, Shnier R, Ketter T . Is a lack of disgust something to fear? A functional magnetic resonance imaging facial emotion recognition study in euthymic bipolar disorder patients. Bipolar Disord 2007; 9: 345–357.

    Article  PubMed  Google Scholar 

  140. Wessa M, Houenou J, Paillere-Martinot ML, Berthoz S, Artiges E, Leboyer M et al. Fronto-striatal overactivation in euthymic bipolar patients during an emotional go/nogo task. Am J Psychiatry 2007; 164: 638–646.

    Article  PubMed  Google Scholar 

  141. Krüger S, Alda M, Young LT, Goldapple K, Parikh S, Mayberg HS . Risk and resilience markers in bipolar disorder: brain responses to emotional challenge in bipolar patients and their healthy siblings. Am J Psychiatry 2006; 163: 257–264.

    Article  PubMed  Google Scholar 

  142. Malhi GS, Lagopoulos J, Owen AM, Ivanovski B, Shnier R, Sachdev P . Reduced activation to implicit affect induction in euthymic bipolar patients: an fMRI study. J Affect Disord 2007; 97: 109–122.

    Article  PubMed  Google Scholar 

  143. Lagopoulos J, Ivanovski B, Mahli GS . An event-related functional MRI study of working memory in euthymic bipolar disorder. J Psychiatry Neurosci 2007; 32: 174–184.

    PubMed  PubMed Central  Google Scholar 

  144. Monks PJ, Thompson JM, Bullmore ET, Suckling J, Brammer MJ, Williams SCR et al. A functional MRI study of working memory task in euthymic bipolar disorder: evidence for tasks-specific dysfunction. Bipolar Disord 2004; 6: 550–564.

    Article  PubMed  Google Scholar 

  145. Strakowski SM, Adler CM, Holland SK, Mills NP, Delbello MP . A preliminary fMRI study of sustained attention in euthymic bipolar disorder. Neuropsychopharmacology 2004; 29: 1734–1740.

    Article  PubMed  Google Scholar 

  146. Ketter TA, Kimbrell TA, George MS, Dunn RT, Speer AM, Benson BE et al. Effects of mood and subtype on cerebral glucose metabolism in treatment-resistant bipolar disorder. Biol Psychiatry 2001; 49: 97–109.

    Article  CAS  PubMed  Google Scholar 

  147. Altshuler L, Bookheimer S, Proenza MA . Increased amygdala activation during mania: a functional magnetic resonance imaging study. Am J Psychiatry 2005; 162: 1211–1213.

    Article  PubMed  Google Scholar 

  148. Blumberg HP, Stern E, Ricketts S, Martinez D, White T, Epstein J et al. Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. Am J Psychiatry 1999; 156: 1986–1988.

    CAS  PubMed  Google Scholar 

  149. Blumberg HP, Leung HC, Skudlarski P, Lacadie CM, Fredericks CA, Harris BC et al. A functional magnetic resonance imaging study of bipolar disorder: state-and trait-related dysfunction in ventral prefrontal cortices. Arch Gen Psychiatry 2003; 60: 601–609.

    Article  PubMed  Google Scholar 

  150. Kronhaus DM, Lawrence NS, Williams AM, Frangou S, Brammer MJ, Williams SC et al. Stroop performance in bipolar disorder: further evidence for abnormalities in the ventral prefrontal cortex. Bipolar Disord 2006; 8: 28–39.

    Article  PubMed  Google Scholar 

  151. Strakowski SM, Adler CM, Holland SK, Mills NP, DelBello MP, Eliassen JC . Abnormal fMRI brain activation in euthymic bipolar disorder patients during a counting Stroop interference task. A J Psychiatry 2005; 162: 1697–1705.

    Article  Google Scholar 

  152. Gruber SA, Rogowska J, Yurgelun-Todd DA . Decreased activation of the anterior cingulate in bipolar patients: an fMRI study. J Affect Disord 2004; 82: 191–201.

    Article  PubMed  Google Scholar 

  153. Marchand WR, Lee JN, Thatcher GW, Jensen C, Stewart D, Dilda V et al. A functional MRI study of a paced motor activation task to evaluate frontal-subcortical circuit function in bipolar depression. Psychiatry Res 2007; 155: 221–230.

    Article  PubMed  Google Scholar 

  154. Strakowski S, DelBello M, Adler C . The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry 2005; 10: 105–116.

    Article  CAS  PubMed  Google Scholar 

  155. Elliott R, Ogilvie A, Rubinsztein JS, Calderon G, Dolan RJ, Sahakian BJ . Abnormal ventral frontal response during performance of an affective go/no go task in patients with mania. Biol Psychiatry 2004; 55: 1163–1170.

    Article  PubMed  Google Scholar 

  156. Foland LC, Altshuler LL, Bookheimer SY, Eisenberger N, Townsend J, Thompson PM . Evidence for deficient modulation of amygdala response by prefrontal cortex in bipolar mania. Psychiatry Res 2008; 162: 27–37.

    Article  PubMed  Google Scholar 

  157. Lagopoulos J, Malhi GS . A functional magnetic resonance imaging study of emotional Stroop in euthymic bipolar disorder. Neuroreport 2007; 18: 1583–1587.

    Article  PubMed  Google Scholar 

  158. Malhi GS, Lagopoulos J, Sachdev PS, Ivanovski B, Shnier R . An emotional Stroop functional MRI study of euthymic bipolar disorder. Bipolar Disord 2005; 7: 58–69.

    Article  PubMed  Google Scholar 

  159. Rubinsztein JS, Fletcher PC, Rogers RD, Ho LW, Aigbirhio FI, Paykel ES et al. Decision-making in mania: a PET study. Brain 2001; 124: 2550–2563.

    Article  CAS  PubMed  Google Scholar 

  160. Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001; 50: 825–844.

    Article  CAS  PubMed  Google Scholar 

  161. Blumberg HP, Krystal JH, Bansal R, Martin A, Dziura J, Durkin K et al. Age, rapid-cycling, and pharmacotherapy effects on ventral prefrontal cortex in bipolar disorder: a cross-sectional study. Biol Psychiatry 2006; 59: 611–618.

    Article  CAS  PubMed  Google Scholar 

  162. Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C et al. Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 2004; 55: 578–587.

    Article  PubMed  Google Scholar 

  163. Davidson RJ, Irwin W . The functional neuroanatomy of emotion and affective style. Trends Cogn Sci 1999; 3: 11–21.

    Article  CAS  PubMed  Google Scholar 

  164. Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B et al. Normal brain development and aging: quantitative analysis at in vivo MRI imaging in healthy volunteers. MD Radiology 2000; 216: 672–682.

    Article  CAS  Google Scholar 

  165. Reiss AL, Abrams MT, Singer HS, Ross JL, Denckla MB . Brain development, gender and IQ in children: a volumetric imaging study. Brain 1996; 119: 1763–1774.

    Article  PubMed  Google Scholar 

  166. Sowell ER, Trauner DA, Gamst A, Jernigan TL . Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol 2002; 44: 4–16.

    Article  PubMed  Google Scholar 

  167. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 1999; 2: 861–863.

    Article  CAS  PubMed  Google Scholar 

  168. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW . Mapping cortical change across the human life span. Nat Neurosci 2003; 6: 309–315.

    Article  CAS  PubMed  Google Scholar 

  169. Huttenlocher PR . Synaptic density in human frontal cortex: developmental changes and effects of aging. Brain Res 1979; 163: 195–205.

    Article  CAS  PubMed  Google Scholar 

  170. Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL et al. Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 1996; 6: 551–560.

    Article  CAS  PubMed  Google Scholar 

  171. Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SCR, Simmons A et al. Functional frontalisation with age: mapping neurodevelopmental trajectories with fMRI. Neurosci Biobehav Rev 2000; 24: 13–19.

    Article  CAS  PubMed  Google Scholar 

  172. Marsh R, Zhu RT, Schultz RT, Quakenbush G, Royal J, Skudlarski P et al. A developmental fMRI study of self-regulatory control. Hum Brain Mapp 2006; 27: 848–863.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Luna B, Sweeney JA . Studies of brain and cognitive maturation through childhood and adolescence: a strategy for testing neurodevelopmental hypotheses. Schizophr Bull 2001; 27: 443–455.

    Article  CAS  PubMed  Google Scholar 

  174. Luna B, Sweeney JA . The emergence of collaborative brain function: fMRI studies of the development of response inhibition. Ann NY Acad Sci 2004; 1021: 296–309.

    Article  PubMed  Google Scholar 

  175. Herba C, Phillips ML . Development of facial expression recognition from childhood to adolescence: behavioural and neurological perspectives. J Child Psychol Psychiatry 2004; 45: 1185–1198.

    Article  PubMed  Google Scholar 

  176. Camras LA, Allison K . Children's understanding of emotional facial expressions and verbal labels. J Nonverbal Behav 1985; 9: 84–94.

    Article  Google Scholar 

  177. Chung MS, Thomson DM . Development of face recognition. Br J Psychol 1995; 86: 55–87.

    Article  PubMed  Google Scholar 

  178. De Sonneville LMJ, Verschoor CA, Njiokiktjien C, Op het Veld V, Toorenaar N, Vranken M . Facial identity and facial emotions: speed, accuracy, and processing strategies in children and adults. J Clin Exp Neuropsychol 2002; 24: 200–213.

    Article  CAS  PubMed  Google Scholar 

  179. Levesque J, Joanette Y, Mensour B, Beaudoin G, Leroux J-M, Bourgouin P et al. Neural basis of emotional self-regulation in childhood. Neuroscience 2004; 129: 361–369.

    Article  CAS  PubMed  Google Scholar 

  180. Monk CS, McClure EB, Nelson EE, Zarahn E, Bilder RM, Leibenluft E et al. Adolescent immaturity in attention-related brain engagement to emotional facial expressions. Neuroimage 2003; 20: 420–428.

    Article  PubMed  Google Scholar 

  181. Blakemore SJ, Choudhury S . Brain development during puberty: state of the science. Dev Sci 2006; 9: 11–14.

    Article  PubMed  Google Scholar 

  182. Dahl RE . Adolescent brain development: a period of vulnerabilities and opportunities. NY Acad Sci 2004; 1021: 1–22.

    Article  Google Scholar 

  183. Nelson EE, Leibenluft E, McClure E, Pine DS . The social-orientation of adolescence: a neuroscience perspective on the process and its relation to psychopathology. Psychol Med 2005; 35: 163–174.

    Article  PubMed  Google Scholar 

  184. Steinberg L . Cognitive and affective development in adolescence. Trends Cogn Sci 2005; 9: 69–74.

    Article  PubMed  Google Scholar 

  185. Ernst M, Pine DS, Hardin M . Triadic model of the neurobiology of motivated behavior in adolescence. Psychol Med 2006; 36: 299–312.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Yurgelun-Todd DA . Emotional and cognitive changes during adolescence. Curr Opin Neurobiol 2007; 17: 251–257.

    Article  CAS  PubMed  Google Scholar 

  187. Galvan A, Hare T, Parra C, Penn J, Voss H, Glover G et al. Earlier development of accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J Neurosci 2006; 26: 6885–6892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hare TA, Tottenham N, Davidson MC, Glover GH, Casey BJ . Contributions of amygdala and striatal activity in emotion regulation. Biol Psychiatry 2005; 57: 624–632.

    Article  PubMed  Google Scholar 

  189. Davies PL, Segalowitz SJ, Gavin WJ . Development of response-monitoring ERPs in 7–25-year-olds. Dev Neuropsychol 2004; 25: 355–376.

    Article  PubMed  Google Scholar 

  190. Ladouceur CD, Dahl RE, Carter CS . ERP correlates of action monitoring in adolescence. Ann NY Acad Sci 2004; 1021: 329–336.

    Article  PubMed  Google Scholar 

  191. Ladouceur CD, Dahl RE, Carter CS . Development of action monitoring through adolescence into adulthood: ERP and source localization. Dev Sci 2007; 10: 874–891.

    Article  PubMed  Google Scholar 

  192. Ernst M, Paulus MP . Neurobiology of decision making: a selective review from a neurocognitive and clinical perspective. Biol Psychiatry 2005; 58: 597–604.

    Article  PubMed  Google Scholar 

  193. Eshel N, Nelson EE, Blair RJ, Pine DS, Ernst M . Neural substrates of choice selection in adults and adolescents: development of the ventrolateral prefrontal and anterior cingulate cortices. Neuropsychologia 2007; 45: 1270–1279.

    Article  PubMed  Google Scholar 

  194. Steinberg L . Cognitive and affective development in adolescence. Trends Cogn Sci 2005; 9: 69–74.

    Article  PubMed  Google Scholar 

  195. Giedd JN, Clasen LS, Lenroot R, Greenstein D, Wallace GL, Ordaz S et al. Puberty-related influences on brain development. Mol Cell Endocrinol 2006; 254–255: 154–162.

    Article  PubMed  CAS  Google Scholar 

  196. Shen H, Gong QH, Aoki C, Yuan M, Ruderman Y, Dattilo M et al. Reversal of neurosteroid effects at alpha4beta2deltaGABA(A) receptors triggers anxiety at puberty. Nat Neurosci 2007; 10: 469–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Dickstein DP, Milham MP, Nugent AC, Drevets WC, Charney D, Pine DS et al. Frontotemporal alternations in pediatric bipolar disorder. Arch Gen Psychiatry 2005; 62: 734–741.

    Article  PubMed  Google Scholar 

  198. Chang K, Barnea-Goraly N, Karchemskiy A, Simeonava D, Barnes P, Ketter T et al. Cortical magnetic resonance imaging findings in familial pediatric bipolar disorder. Biol Psychiatry 2005; 58: 197–203.

    Article  PubMed  Google Scholar 

  199. Chen H, Nicoletti M, Hatch J, Sassi R, Axelson DA, Brambilla P et al. Abnormal left superior temporal gyrus volumes in children and adolescents with bipolar disorder: a magnetic resonance imaging study. Neurosci Lett 2004; 363: 65–68.

    Article  CAS  PubMed  Google Scholar 

  200. Blumberg H, Kaufman J, Martin A, Whiteman R, Zhang J, Gore J et al. Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatry 2003; 60: 1201–1208.

    Article  PubMed  Google Scholar 

  201. Frazier J, Chiu S, Breeze J, Makris N, Lange N, Kennedy D et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am J Psychiatry 2005; 162: 1256–1265.

    Article  PubMed  Google Scholar 

  202. Blumberg HP, Frdericks C, Wang F, Kalmar J, Spencer L, Papademetris X et al. Preliminary evidence for persistent abnormalities in amygdala volumes in adolescents with bipolar disorder. Bipolar Disord 2005; 7: 570–576.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Hajek T, Carrey N, Alda M . Neuroanatomical abnormalities as risk factors for bipolar disorder. Bipolar Disord 2005; 7: 393–403.

    Article  PubMed  Google Scholar 

  204. Gotgay N, Ordonez A, Herman DH, Hayashi KM, Greenstein D, Vaituzis C et al. Dynamic mapping of cortical development before and after the onset of pediatric bipolar illness. J Child Psychol Psychiatry 2007; 48: 852–862.

    Article  Google Scholar 

  205. Ladouceur CD, Almeida JRC, Birmaher B, Axelson DA, Nau S, Kalas C et al. Subcortical gray matter volume abnormalities in healthy bipolar offspring: potential neuroanatomical risk marker for bipolar disorder? J Am Acad Child Adolesc Psychiatry 2008; 47: 532–539.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Dickstein DP, Treland JE, Snow J, McClure EB, Mehta MS, Towbin KE et al. Neuropsychological performance in pediatric bipolar disorder. Biol Psychiatry 2004; 55: 32–39.

    Article  PubMed  Google Scholar 

  207. Rich B, Vinton D, Roberson-Nay R, Hommer R, Berghorst L, McClure EB et al. Limbic hyperactivation during processing of neutral facial expressions in children with bipolar disorder. Proc Natl Acad Sci 2006; 103: 8900–8905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. McClure EB, Treland J, Snow J, Schmajuk M, Dickstein DP, Towbin K et al. Deficits in social cognition and response flexibility in pediatric bipolar disorder. Am J Psychiatry 2005; 162: 1644–1651.

    Article  PubMed  Google Scholar 

  209. Leibenluft E, Charney DS, Pine DS . Researching the pathophysiology of pediatric bipolar disorder. Biol Psychiatry 2003; 53: 1009–1020.

    Article  PubMed  Google Scholar 

  210. Dickstein DP, Leibenluft E . Emotion regulation in children and adolescents: boundaries between normalcy and bipolar disorder. Dev Psychopathol 2006; 18: 1105–1131.

    Article  PubMed  Google Scholar 

  211. Gorrindo T, Blair RJR, Budhani S, Dickstein DP, Pine DS, Leibenluft E . Deficits on a probabilistic response-reversal task in patients with pediatric bipolar disorder. Am J Psychiatry 2005; 162: 1975–1977.

    Article  PubMed  Google Scholar 

  212. Blumberg HP, Martin A, Kaufman J, Leung HC, Skudlarski P, Lacadie C et al. Frontostriatal abnormalities in adolescents with bipolar disorder: preliminary observations from functional MRI. [Comparative Study. Journal Article. Research Support, Non-U.S. Gov't. Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.] Am J Psychiatry 2003; 160: 1345–1347.

    Article  PubMed  Google Scholar 

  213. Chang K, Adleman NE, Dienes K, Simeonava D, Menon V, Reiss A . Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance imaging investigation. Arch Gen Psychiatry 2004; 61: 781–792.

    Article  PubMed  Google Scholar 

  214. Rich B, Fromm S, Berghorst L, Dickstein DP, Brotman MA, Pine DS et al. Neural connectivity in children with bipolar disorder: impairment in the face of emotion processing circuit. J Child Psychol Psychiatry 2008; 49: 88–96.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by NIMH, R01(MH076971-01) to MLP; NARSAD Independent Investigator Award to MLP; NARSAD Young Investigator Award to CDL and NIMH DIRP support for WCD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Phillips.

Additional information

Glossary of terms

Anterior cingulate gyrus (ACG)

Subgenual ACG: Brodmann areas (BAs) 25 posteriorly and 24 anteriorly

Rostral ACG: Brodmann area 24

Dorsal ACG: Brodmann areas 24, 32

Orbital frontal cortex (OFC): Brodmann areas 11–14 and medial 47

Dorsomedial prefrontal cortex (MdPFC): Brodmann areas 10/32

Dorsolateral prefrontal cortex (DLPFC): Brodmann areas 9, 44, 46

Ventrolateral prefrontal cortex (VLPFC): Brodmann areas 45, 47

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, M., Ladouceur, C. & Drevets, W. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 13, 833–857 (2008). https://doi.org/10.1038/mp.2008.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.65

Keywords

This article is cited by

Search

Quick links