Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Elevated plasma and cerebrospinal fluid interleukin-1 beta and tumor necrosis factor-alpha concentration and combined outcome of death or abnormal neuroimaging in preterm neonates with early-onset clinical sepsis

Abstract

Objective:

Prematurity and sepsis are the major contributors of neonatal mortality and neurodevelopmental sequelae. The present study was conducted to measure the plasma and cerebrospinal fluid (CSF) concentration of interleukin (IL)-1β and tumor necrotic factor (TNF)-α in preterm neonates with early-onset clinical sepsis (EOCS), and to find out their association with combined outcome of death or abnormal neuroimaging.

STUDY DESIGN:

Thirty-two preterm (34 weeks) neonates with EOCS and 32 gestational age-matched, healthy neonates served as cases and controls, respectively. Samples were collected soon after birth. Neonates were followed up clinically and by serial cranial ultrasonography (CUS) until discharge and subsequently by magnetic resonance imaging (MRI) of brain until 1 year. Developmental screening was done by Denver Developmental Screening test-II.

Result:

In EOCS group, no neonate had any clinical/microbiological evidence of meningitis. Blood culture was positive in 17 (53%). CUS was abnormal in 12 (37%) (intracranial hemorrhage-11, periventricular leukomalacia-1). Ten (31%) neonates expired. Significant elevation of plasma and CSF IL-1β and TNF-α was observed in the EOCS group. On follow-up, seven (22%) neonates showed evidence of white matter damage in MRI, two of them had developmental delay and microcephaly. Plasma and CSF IL-1β and TNF-α concentration were significantly elevated in deceased neonates and those with abnormal neuroimaging. Both biomarkers demonstrated high predictive accuracy for poor outcome in receiver-operating curve analysis.

Conclusion:

Elevation of plasma and CSF IL-1β and TNF-α is associated with an increase in the combined outcome of death or abnormal neuroimaging in preterm neonates with EOCS in the absence of clinical/microbiological evidence of meningitis with high predictive accuracy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 2012; 379: 2162–2172.

    Article  PubMed  Google Scholar 

  2. Chang HH, Larson J, Blencowe H, Spong CY, Howson CP, Cairns-Smith S et al. Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index. Lancet 2013; 381: 223–234.

    Article  PubMed  Google Scholar 

  3. Elovitz MA, Brown AG, Breen K, Anton L, Maubert M, Burd I . Intrauterine inflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int J Dev Neurosci 2011; 29: 663–671.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leviton A, Dammann O . Coagulation, inflammation, and the risk of neonatal white matter damage. Pediatr Res 2004; 55: 541–545.

    Article  PubMed  Google Scholar 

  5. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B et al. National institute of child health and human development neonatal research network neurodevelopmental and growth impairment among extremely low-birth weight infants with neonatal infection. JAMA 2004; 292: 2357–2365.

    Article  CAS  PubMed  Google Scholar 

  6. Adams-Chapman I, Stoll BJ . Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr Opin Infect Dis 2006; 19: 290–297.

    Article  PubMed  Google Scholar 

  7. Dammann O, Kuban KC, Leviton A . Perinatal infection, fetal inflammatory response, white matter damage, and cognitive limitations in children born preterm. Ment Retard Dev Disabil Res Rev 2002; 8: 46–50.

    Article  PubMed  Google Scholar 

  8. Burd I, Bentz AI, Chai J, Gonzalez J, Monnerie H, Le Roux PD et al. Inflammation-induced preterm birth alters neuronal morphology in the mouse fetal brain. J Neurosci Res 2010; 88: 1872–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McAdams RM, Juul SE . The role of cytokines and inflammatory cells in perinatal brain injury. Neurol Res Int 2012; 2012: 561494.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sheng WS, Hu S, Ni HT, Rowen TN, Lokensgard JR, Peterson PK . TNF-alpha-induced chemokine production and apoptosis in human neural precursor cells. J Leukoc Biol 2005; 78: 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  11. Pugazhenthi S, Zhang Y, Bouchard R, Mahaffey G . Induction of an inflammatory loop by interleukin-1β and tumor necrosis factor-α involves NF-kB and STAT-1 in differentiated human neuroprogenitor Cells. PLoS One 2013; 8: e69585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Wezel-Meijler G, Steggerda SJ, Leijser LM . Cranial ultrasonography in neonates: role and limitations. Semin Perinatol 2010; 34: 28–38.

    Article  PubMed  Google Scholar 

  13. Hatfield T, Wing DA, Buss C, Head K, Muftuler LT, Davis EP . Magnetic resonance imaging demonstrates long-term changes in brain structure in children born preterm and exposed to chorioamnionitis. Am J Obstet Gynecol 2011; 205: 384 e1–384 e8.

    Article  Google Scholar 

  14. Ellison VJ, Mocatta TJ, Winterbourn CC, Darlow BA, Volpe JJ, Inder TE . The relationship of CSF and plasma cytokine levels to cerebral white matter injury in the premature newborn. Pediatr Res 2005; 57: 282–286.

    Article  CAS  PubMed  Google Scholar 

  15. Reiman M, Kujari H, Maunu J, Parkkola R, Rikalainen H, Lapinleimu H et alPIPARI Study Group. Does placental inflammation relate to brain lesions and volume in preterm infants? J Pediatr 2008; 152: 642–647.

    Article  PubMed  Google Scholar 

  16. Alexander JM, Gilstrap LC, Cox SM, McIntire DM, Leveno KJ . Clinical chorioamnionitis and the prognosis for very low birth weight infants. Obstet Gynecol 1998; 91: 725–729.

    CAS  PubMed  Google Scholar 

  17. Prepared by an International Committee. An international classification of retinopathy of prematurity. Br J Ophthalmol 1984; 68: 690–697.

    Article  Google Scholar 

  18. Frankenburg WK, Dodds J, Archer P, Shapiro H, Bresnick B . The Denver II: a major revision and restandardization of the Denver Developmental Screening Test. Pediatrics 1992; 89: 91–97.

    CAS  PubMed  Google Scholar 

  19. Papile LA, Burstein J, Burstein R, Koffler H . Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 1978; 92: 529–534.

    Article  CAS  PubMed  Google Scholar 

  20. Inder TE, Wells SJ, Mogridge N, Spencer C, Volpe JJ . Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study. J Pediatr 2003; 143: 171–179.

    Article  PubMed  Google Scholar 

  21. Volpe JJ, Kinney HC, Jensen FE, Rosenberg PA . The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 2011; 29: 423–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pang Y, Cai Z, Rhodes PG . Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide. Brain Res Dev Brain Res 2003; 140: 205–214.

    Article  CAS  PubMed  Google Scholar 

  23. Cai Z, Pan ZL, Pang Y, Evans OB, Rhodes PG . Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res 2000; 47: 64–72.

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Rousset CI, Hagberg H, Mallard C . Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med 2006; 11: 343–353.

    Article  PubMed  Google Scholar 

  25. Scripter JL, Ko J, Kow K, Arimura A, Ide CF . Regulation by interleukin-1beta of formation of a line of delimiting astrocytes following prenatal trauma to the brain of the mouse. Exp Neurol 1997; 145: 329–341.

    Article  CAS  PubMed  Google Scholar 

  26. Chauvet N, Palin K, Verrier D, Poole S, Dantzer R, Lestage J . Rat microglial cells secrete predominantly the precursor of interleukin-1beta in response to lipopolysaccharide. Eur J Neurosci 2001; 14: 609–617.

    Article  CAS  PubMed  Google Scholar 

  27. Girard S, Kadhim H, Larouche A, Roy M, Gobeil F, Sébire G . Pro-inflammatory disequilibrium of the IL-1 beta/IL-1ra ratio in an experimental model of perinatal brain damages induced by lipopolysaccharide and hypoxia-ischemia. Cytokine 2008; 43: 54–62.

    Article  CAS  PubMed  Google Scholar 

  28. Girard S, Sébire G, Kadhim H . Proinflammatory orientation of the interleukin 1 system and downstream induction of matrix metalloproteinase 9 in the pathophysiology of human perinatal white matter damage. Neuropathol Exp Neurol 2010; 69: 1116–1129.

    Article  CAS  Google Scholar 

  29. Cai Z, Pang Y, Lin S, Rhodes PG . Differential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat. Brain Res 2003; 975: 37–47.

    Article  CAS  PubMed  Google Scholar 

  30. Hanisch UK . Microglia as a source and target of cytokines. Glia 2002; 40: 140–155.

    Article  PubMed  Google Scholar 

  31. Muppidi JR, Tschopp J, Siegel RM . Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 2004; 21: 461–465.

    Article  CAS  PubMed  Google Scholar 

  32. Varfolomeev EE, Ashkenazi A . Tumor necrosis factor: an apoptosis JuNKie? Cell 2004; 116: 491–497.

    Article  CAS  PubMed  Google Scholar 

  33. Perlman JM, Risser R, Broyles RS . Bilateral cystic periventricular leukomalacia in the premature infant: associated risk factors. Pediatrics 1996; 97: 822–827.

    CAS  PubMed  Google Scholar 

  34. Wu YW, Colford JM Jr . Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA 2000; 284: 1417–1424.

    Article  CAS  PubMed  Google Scholar 

  35. Graham EM, Holcroft CJ, Rai KK, Donohue PK, Allen MC . Neonatal cerebral white matter injury in preterm infants is associated with culture positive infections and only rarely with metabolic acidosis. Am J Obstet Gynecol 2004; 191: 1305–1310.

    Article  PubMed  Google Scholar 

  36. Rocha G, Proença E, Quintas C, Rodrigues T, Guimarães H . Chorioamnionitis and brain damage in the preterm newborn. J Matern Fetal Neonatal Med 2007; 20: 745–749.

    Article  PubMed  Google Scholar 

  37. Chau V, Poskitt KJ, McFadden DE, Bowen-Roberts T, Synnes A, Brant R et al. Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 2009; 66: 155–164.

    Article  PubMed  Google Scholar 

  38. Vergani P, Patanè L, Doria P, Borroni C, Cappellini A, Pezzullo JC et al. Risk factors for neonatal intraventricular haemorrhage in spontaneous prematurity at 32 weeks gestation or less. Placenta 2000; 21: 402–407.

    Article  CAS  PubMed  Google Scholar 

  39. Salafia CM, Minior VK, Rosenkrantz TS, Pezzullo JC, Popek E, Cusick W et al. Maternal, placental, and neonatal associations with early germinal matrix intraventricular hemorrhage in infants born before 32 weeks' gestation. Am J Perinatol 1995; 12: 429–436.

    Article  CAS  PubMed  Google Scholar 

  40. Kaukola T, Herva R, Perhomaa M, Pääkkö E, Kingsmore S, Vainionpää L et al. Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr Res 2006; 59: 478–483.

    Article  PubMed  Google Scholar 

  41. Sarkar S, Kaplan C, Wiswell TE, Spitzer AR . Histological chorioamnionitis and the risk of early intraventricular hemorrhage in infants born<or =28 weeks gestation. J Perinatol 2005; 25: 749–752.

    Article  PubMed  Google Scholar 

  42. Verma U, Tejani N, Klein S, Reale MR, Beneck D, Figueroa R et al. Obstetric antecedents of intraventricular hemorrhage and periventricular leukomalacia in the low-birth-weight neonate. Am J Obstet Gynecol 1997; 176: 275–281.

    Article  CAS  PubMed  Google Scholar 

  43. Chang BA, Huang Q, Quan J, Ladd M, Kwan E, McFadden DE et al. Early inflammation in the absence of overt infection in preterm neonates exposed to intensive care. Cytokine 2011; 56: 621–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moscuzza F, Belcari F, Nardini V, Bartoli A, Domenici C, Cuttano A et al. Correlation between placental histopathology and fetal/neonatal outcome: chorioamnionitis and funisitis are associated to intraventricular haemorrage and retinopathy of prematurity in preterm newborns. Gynecol Endocrinol 2011; 27: 319–323.

    Article  PubMed  Google Scholar 

  45. Polam S, Koons A, Anwar M, Shen-Schwarz S, Hegyi T . Effect of chorioamnionitis on neurodevelopmental outcome in preterm infants. Arch Pediatr Adolesc Med 2005; 159: 1032–1035.

    Article  PubMed  Google Scholar 

  46. Lee J, Dammann O . Perinatal infection, inflammation, and retinopathy of prematurity. Semin Fetal Neonatal Med 2012; 17: 26–29.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Basu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, S., Agarwal, P., Anupurba, S. et al. Elevated plasma and cerebrospinal fluid interleukin-1 beta and tumor necrosis factor-alpha concentration and combined outcome of death or abnormal neuroimaging in preterm neonates with early-onset clinical sepsis. J Perinatol 35, 855–861 (2015). https://doi.org/10.1038/jp.2015.86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2015.86

This article is cited by

Search

Quick links