Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse

Abstract

Hyaluronan (HA) production by dendritic cells (DCs) is known to promote antigen presentation and to augment T-cell activation and proliferation. We hypothesized that pericellular HA can function as intercellular ‘glue’ directly mediating T cell–DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs, which was abrogated upon pre-treatment of the DCs with 4-methylumbelliferone (4-MU), an agent which blocks HA synthesis. Furthermore, T cells regulate HA production by DCs via T cell-derived cytokines in a T helper (Th) subset-specific manner, as demonstrated by the observation that cell-culture supernatants from Th1 but not Th2 clones promote HA production. Similar effects were seen upon the addition of exogenous Th1 cytokines, IL-2, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α). The critical factors which determined the extent of DC–T cell binding in this system were the nature of the pre-treatment the DCs received and their capacity to synthesize HA, as T-cell clones which were pre-treated with monensin, added to block cytokine secretion, bound equivalently irrespective of their Th subset. These data support the existence of a feedforward loop wherein T-cell cytokines influence DC production of HA, which in turn affects the extent of DC–T cell binding. We also document the presence of focal deposits of HA at the immune synapse between T-cells and APC and on dendritic processes thought to be important in antigen presentation. These data point to a pivotal role for HA in DC–T cell interactions at the IS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Evanko SP, Tammi MI, Tammi RH, Wight TN . Hyaluronan-dependent pericellular matrix. Adv Drug Deliv Rev 2007; 59: 1351–1365.

    Article  CAS  Google Scholar 

  2. Haslam SM, Julien S, Burchell JM, Monk CR, Ceroni A, Garden OA et al. Characterizing the glycome of the mammalian immune system. Immunol Cell Biol 2008; 86: 564–573.

    Article  CAS  Google Scholar 

  3. Ito S . Structure and function of the glycocalyx. Fed Proc 1969; 28: 12–25.

    CAS  PubMed  Google Scholar 

  4. Ito S . Form and function of the glycocalyx on free cell surfaces. Philos Trans R Soc Lond B Biol Sci 1974; 268: 55–66.

    Article  CAS  Google Scholar 

  5. Rilla K, Tiihonen R, Kultti A, Tammi M, Tammi R . Pericellular hyaluronan coat visualized in live cells with a fluorescent probe is scaffolded by plasma membrane protrusions. J Histochem Cytochem 2008; 56: 901–910.

    Article  CAS  Google Scholar 

  6. Li Y, Heldin P . Hyaluronan production increases the malignant properties of mesothelioma cells. Br J Cancer 2001; 85: 600–607.

    Article  CAS  Google Scholar 

  7. Kultti A, Pasonen-Seppanen S, Jauhiainen M, Rilla KJ, Karna R, Pyoria E et al. 4-methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3. Exp Cell Res 2009; 315: 1914–1923.

    Article  CAS  Google Scholar 

  8. Kakizaki I, Kojima K, Takagaki K, Endo M, Kannagi R, Ito M et al. A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone. J Biol Chem 2004; 279: 33281–33289.

    Article  CAS  Google Scholar 

  9. Knudson W, Aguiar DJ, Hua Q, Knudson CB . CD44-anchored hyaluronan-rich pericellular matrices: an ultrastructural and biochemical analysis. Exp Cell Res 1996; 228: 216–228.

    Article  CAS  Google Scholar 

  10. de la Motte CA, Hascall VC, Calabro A, Yen-Lieberman B, Strong SA . Mononuclear leukocytes preferentially bind via CD44 to hyaluronan on human intestinal mucosal smooth muscle cells after virus infection or treatment with poly(I.C). J Biol Chem 1999; 274: 30747–30755.

    Article  CAS  Google Scholar 

  11. Evanko SP, Angello JC, Wight TN . Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999; 19: 1004–1013.

    Article  CAS  Google Scholar 

  12. Girish KS, Kemparaju K . The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 2007; 80: 1921–1943.

    Article  CAS  Google Scholar 

  13. Mummert ME, Mummert D, Edelbaum D, Hui F, Matsue H, Takashima A . Synthesis and surface expression of hyaluronan by dendritic cells and its potential role in antigen presentation. J Immunol 2002; 169: 4322–4331.

    Article  CAS  Google Scholar 

  14. Do Y, Nagarkatti PS, Nagarkatti M . Role of CD44 and hyaluronic acid (HA) in activation of alloreactive and antigen-specific T cells by bone marrow-derived dendritic cells. J Immunother 2004; 27: 1–12.

    Article  CAS  Google Scholar 

  15. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T et al. Oligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4. J Exp Med 2002; 195: 99–111.

    Article  CAS  Google Scholar 

  16. Bollyky PL, Falk BA, Long SA, Preisinger A, Braun KR, Wu RP et al. CD44 costimulation promotes FoxP3+ regulatory T cell persistence and function via production of IL-2, IL-10, and TGF-beta. J Immunol 2009; 183: 2232–2241.

    Article  CAS  Google Scholar 

  17. Huet S, Groux H, Caillou B, Valentin H, Prieur AM, Bernard A . CD44 contributes to T cell activation. J Immunol 1989; 143: 798–801.

    CAS  PubMed  Google Scholar 

  18. Jiang D, Liang J, Noble PW . Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 2007; 23: 435–461.

    Article  CAS  Google Scholar 

  19. Noble PW . Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol 2002; 21: 25–29.

    Article  CAS  Google Scholar 

  20. Wilkinson TS, Potter-Perigo S, Tsoi C, Altman LC, Wight TN . Pro- and anti-inflammatory factors cooperate to control hyaluronan synthesis in lung fibroblasts. Am J Respir Cell Mol Biol 2004; 31: 92–99.

    Article  CAS  Google Scholar 

  21. Tanimoto K, Ohno S, Fujimoto K, Honda K, Ijuin C, Tanaka N et al. Proinflammatory cytokines regulate the gene expression of hyaluronic acid synthetase in cultured rabbit synovial membrane cells. Connect Tissue Res 2001; 42: 187–195.

    Article  CAS  Google Scholar 

  22. Campo GM, Avenoso A, Campo S, Angela D, Ferlazzo AM, Calatroni A . TNF-alpha, IFN-gamma, and IL-1beta modulate hyaluronan synthase expression in human skin fibroblasts: synergistic effect by concomital treatment with FeSO4 plus ascorbate. Mol Cell Biochem 2006; 292: 169–178.

    Article  CAS  Google Scholar 

  23. Campo GM, Avenoso A, Campo S, D'Ascola A, Traina P, Calatroni A . Effect of cytokines on hyaluronan synthase activity and response to oxidative stress by fibroblasts. Br J Biomed Sci 2009; 66: 28–36.

    Article  CAS  Google Scholar 

  24. Chenevier-Gobeaux C, Morin-Robinet S, Lemarechal H, Poiraudeau S, Ekindjian JC, Borderie D . Effects of pro- and anti-inflammatory cytokines and nitric oxide donors on hyaluronic acid synthesis by synovial cells from patients with rheumatoid arthritis. Clin Sci (Lond) 2004; 107: 291–296.

    Article  CAS  Google Scholar 

  25. Girard N, Maingonnat C, Bertrand P, Vasse M, Delpech B . Hyaluronectin secretion by monocytes: downregulation by IL-4 and IL-13, upregulation by IL-10. Cytokine 1999; 11: 579–584.

    Article  CAS  Google Scholar 

  26. Wang L, Teng W, Shan Z . Effect of IFN-gamma, IL-4 on proliferation and synthesis of hyaluronic acid and collagen in cultured human retroorbital fibroblasts in vitro. Chin Med J (Engl) 2000; 113: 907–910.

    CAS  Google Scholar 

  27. Han R, Smith TJ . T helper type 1 and type 2 cytokines exert divergent influence on the induction of prostaglandin E2 and hyaluronan synthesis by interleukin-1beta in orbital fibroblasts: implications for the pathogenesis of thyroid-associated ophthalmopathy. Endocrinology 2006; 147: 13–19.

    Article  CAS  Google Scholar 

  28. Reijonen H, Novak EJ, Kochik S, Heninger A, Liu AW, Kwok WW et al. Detection of GAD65-specific T-cells by major histocompatibility complex class II tetramers in type 1 diabetic patients and at-risk subjects. Diabetes 2002; 51: 1375–1382.

    Article  CAS  Google Scholar 

  29. Shih SC, Smith LE . Quantitative multi-gene transcriptional profiling using real-time PCR with a master template. Exp Mol Pathol 2005; 79: 14–22.

    Article  CAS  Google Scholar 

  30. Agren UM, Tammi R, Tammi M . A dot-blot assay of metabolically radiolabeled hyaluronan. Anal Biochem 1994; 217: 311–315.

    Article  CAS  Google Scholar 

  31. Lin W, Shuster S, Maibach HI, Stern R . Patterns of hyaluronan staining are modified by fixation techniques. J Histochem Cytochem 1997; 45: 1157–1163.

    Article  CAS  Google Scholar 

  32. Potter-Perigo S, Johnson PY, Evanko SP, Chan CK, Braun KR, Wilkinson TS et al. Poly I:C stimulates versican accumulation in the extracellular matrix promoting monocyte adhesion. Am J Respir Cell Mol Biol 2009; in press.

  33. Mapleson JL, Buchwald M . Effect of cycloheximide and dexamethasone phosphate on hyaluronic acid synthesis and secretion in cultured human skin fibroblasts. J Cell Physiol 1981; 109: 215–222.

    Article  CAS  Google Scholar 

  34. Agren UM, Tammi R, Tammi M . A dot-blot assay of metabolically radiolabeled hyaluronan. Anal Biochem 1994; 217: 311–315.

    Article  CAS  Google Scholar 

  35. Mahaffey CL, Mummert ME . Hyaluronan synthesis is required for IL-2-mediated T cell proliferation. J Immunol 2007; 179: 8191–8199.

    Article  CAS  Google Scholar 

  36. Nakamura T, Takagaki K, Shibata S, Tanaka K, Higuchi T, Endo M . Hyaluronic-acid-deficient extracellular matrix induced by addition of 4-methylumbelliferone to the medium of cultured human skin fibroblasts. Biochem Biophys Res Commun 1995; 208: 470–475.

    Article  CAS  Google Scholar 

  37. Tanaka K, Taniguchi R, Higuchi T, Ozaki T, Mizunuma H, Takagaki K . 4-methylumbelliferone inhibits hyaluronate synthesis in human uterine cervical fibroblasts. J Obstet Gynaecol Res 2007; 33: 772–776.

    Article  CAS  Google Scholar 

  38. Chajara A, Raoudi M, Delpech B, Leroy M, Basuyau JP, Levesque H . Circulating hyaluronan and hyaluronidase are increased in diabetic rats. Diabetologia 2000; 43: 387–388.

    Article  CAS  Google Scholar 

  39. Chajara A, Raoudi M, Delpech B, Leroy M, Basuyau JP, Levesque H . Increased hyaluronan and hyaluronidase production and hyaluronan degradation in injured aorta of insulin-resistant rats. Arterioscler Thromb Vasc Biol 2000; 20: 1480–1487.

    Article  CAS  Google Scholar 

  40. Blanco P, Palucka AK, Pascual V, Banchereau J . Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 2008; 19: 41–52.

    Article  CAS  Google Scholar 

  41. Sampson PM, Rochester CL, Freundlich B, Elias JA . Cytokine regulation of human lung fibroblast hyaluronan (hyaluronic acid) production. Evidence for cytokine-regulated hyaluronan (hyaluronic acid) degradation and human lung fibroblast-derived hyaluronidase. J Clin Invest 1992; 90: 1492–503.

    Article  CAS  Google Scholar 

  42. Pulimood AB, Ramakrishna BS, Rita AB, Srinivasan P, Mohan V, Gupta S et al. Early activation of mucosal dendritic cells and macrophages in acute Campylobacter colitis and cholera: an in vivo study. J Gastroenterol Hepatol 2008; 23: 752–758.

    Article  Google Scholar 

  43. Newton PJ, Weller IV, Katz DR, Chain BM . Autologous apoptotic T cells interact with dendritic cells, but do not affect their surface phenotype or their ability to induce recall immune responses. Clin Exp Immunol 2003; 133: 50–58.

    Article  CAS  Google Scholar 

  44. Ito T, Amakawa R, Inaba M, Ikehara S, Inaba K, Fukuhara S . Differential regulation of human blood dendritic cell subsets by IFNs. J Immunol 2001; 166: 2961–2969.

    Article  CAS  Google Scholar 

  45. Koski GK, Lyakh LA, Rice NR . Rapid lipopolysaccharide-induced differentiation of CD14(+) monocytes into CD83(+) dendritic cells is modulated under serum-free conditions by exogenously added IFN-gamma and endogenously produced IL-10. Eur J Immunol 2001; 31: 3773–3781.

    Article  CAS  Google Scholar 

  46. Bykovskaja SN, Buffo MJ, Bunker M, Zhang H, Majors A, Herbert M et al. Interleukin-2-induces development of denditric cells from cord blood CD34+ cells. J Leukoc Biol 1998; 63: 620–630.

    Article  CAS  Google Scholar 

  47. Hegde VL, Singh NP, Nagarkatti PS, Nagarkatti M . CD44 mobilization in allogeneic dendritic cell-T cell immunological synapse plays a key role in T cell activation. J Leukoc Biol 2008; 84: 134–142.

    Article  CAS  Google Scholar 

  48. Stuhlmeier KM . Hyaluronan production in synoviocytes as a consequence of viral infections: HAS1 activation by Epstein-Barr virus and synthetic double- and single-stranded viral RNA analogs. J Biol Chem 2008; 283: 16781–16789.

    Article  CAS  Google Scholar 

  49. Rilla K, Siiskonen H, Spicer AP, Hyttinen JM, Tammi MI, Tammi RH . Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity. J Biol Chem 2005; 280: 31890–31897.

    Article  CAS  Google Scholar 

  50. Knudson CB, Nofal GA, Pamintuan L, Aguiar DJ . The chondrocyte pericellular matrix: a model for hyaluronan-mediated cell-matrix interactions. Biochem Soc Trans 1999; 27: 142–147.

    Article  CAS  Google Scholar 

  51. Knepper MA, Saidel GM, Hascall VC, Dwyer T . Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. Am J Physiol Renal Physiol 2003; 284: F433–F446.

    Article  CAS  Google Scholar 

  52. Yashiro-Ohtani Y, Zhou XY, Toyo-oka K, Tai XG, Park CS, Hamaoka T et al. Non-CD28 costimulatory molecules present in T cell rafts induce T cell costimulation by enhancing the association of TCR with rafts. J Immunol 2000; 164: 1251–1259.

    Article  CAS  Google Scholar 

  53. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM et al. The immunological synapse: a molecular machine controlling T cell activation. Science 1999; 285: 221–227.

    Article  CAS  Google Scholar 

  54. Dustin ML . T-cell activation through immunological synapses and kinapses. Immunol Rev 2008; 221: 77–89.

    Article  CAS  Google Scholar 

  55. Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, Sumen C et al. The immunological synapse. Annu Rev Immunol 2001; 19: 375–396.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (DK46635, HL18645 and DK53004) and the JDRF (The Center for Translational Research at BRI). PLB is supported by NIH K-08 grant DK080178-01 and an NIH LRP grant. The authors would like to thank Nathan Standifer and Michael Kinsella for their helpful comments and Tuan Nguyen for tissue processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L Bollyky.

Additional information

Note: Supplementary information is available on the Cellular & Molecular Immunology website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollyky, P., Evanko, S., Wu, R. et al. Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse. Cell Mol Immunol 7, 211–220 (2010). https://doi.org/10.1038/cmi.2010.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2010.9

Keywords

This article is cited by

Search

Quick links