Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity

Abstract

Astrocytes actively participate in synaptic integration by releasing transmitter (glutamate) via a calcium-regulated, exocytosis-like process. Here we show that this process follows activation of the receptor CXCR4 by the chemokine stromal cell-derived factor 1 (SDF-1). An extraordinary feature of the ensuing signaling cascade is the rapid extracellular release of tumor necrosis factor-α (TNFα). Autocrine/paracrine TNFα-dependent signaling leading to prostaglandin (PG) formation not only controls glutamate release and astrocyte communication, but also causes their derangement when activated microglia cooperate to dramatically enhance release of the cytokine in response to CXCR4 stimulation. We demonstrate that altered glial communication has direct neuropathological consequences and that agents interfering with CXCR4-dependent astrocyte–microglia signaling prevent neuronal apoptosis induced by the HIV-1 coat glycoprotein, gp120IIIB. Our results identify a new pathway for glia–glia and glia–neuron communication that is relevant to both normal brain function and neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SDF-1α induces Ca2+-dependent glutamate release from hippocampal slices with blocked neuronal exocytosis and from cultured astrocytes.
Figure 2: Involvement of TNFα in the SDF-1α-evoked glutamate release.
Figure 3: Signaling cascade coupling CXCR4 activation to glutamate release in astrocytes; the key roles of TNFα and PGE2.
Figure 4: Reactive microglia amplify CXCR4-dependent glutamate release via a synergic, TNFα-mediated interaction with the astrocytes.
Figure 5: The CXCR4-dependent glutamate release pathway is activated by the HIV-1 envelope glycoprotein gp120IIIB and is implicated in its neurotoxic action.
Figure 6: Proposed sequence of signaling events coupling in astrocytes

Similar content being viewed by others

References

  1. Haydon, P. G. Glia: listening and talking to the synapse. Nat. Reviews Neurosci. 2, 185–193 (2001).

    Article  CAS  Google Scholar 

  2. Bezzi, P. & Volterra, A. A neuron–glia signalling network in the active brain. Curr. Opin. Neurobiol. 11, 387–394 (2001).

    Article  CAS  Google Scholar 

  3. Porter, J. T. & McCarthy, K. D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073–5081 (1996).

    Article  CAS  Google Scholar 

  4. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bi-directional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997).

    Article  CAS  Google Scholar 

  5. Kang, J., Jiang, L., Goldman, S. A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  Google Scholar 

  6. Grosche, J. et al. Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat. Neurosci. 2, 139–143 (1999).

    Article  CAS  Google Scholar 

  7. Parpura, V. et al. Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994).

    Article  CAS  Google Scholar 

  8. Bezzi, P. et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 (1998).

    Article  CAS  Google Scholar 

  9. Araque, A., Li, N., Doyle, R. T. & Haydon, P. G. SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20, 666–673 (2000).

    Article  CAS  Google Scholar 

  10. Pasti, L., Zonta, M., Pozzan, T., Vicini, S. & Carmignoto, G. Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J. Neurosci. 21, 477–484 (2001).

    Article  CAS  Google Scholar 

  11. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10, 2129–2142 (1998).

    Article  CAS  Google Scholar 

  12. Araque, A., Sanzgiri, R., Parpura, V. & Haydon, P. G. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci. 18, 6822–6829 (1998).

    Article  CAS  Google Scholar 

  13. Newman, E. & Zahs, K. R. Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 18, 4022–4028 (1998).

    Article  CAS  Google Scholar 

  14. Robitaille, R. Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21, 847–855 (1998).

    Article  CAS  Google Scholar 

  15. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    Article  CAS  Google Scholar 

  16. Asensio, V. C. & Campbell, I. L. Chemokines in the CNS: plurifunctional mediators in diverse states. Trends Neurosci. 22, 504–512 (1999).

    Article  CAS  Google Scholar 

  17. Miller, R. J. & Meucci, O. AIDS and the brain: is there a chemokine connection? Trends Neurosci. 22, 471–479 (1999).

    Article  CAS  Google Scholar 

  18. Nagasawa, T., Tachibana, K. & Kawabata, K. A CXC chemokine SDF-1/PBSF: a ligand for a HIV coreceptor, CXCR4. Adv. Immunol. 71, 211–228 (1998).

    Article  Google Scholar 

  19. Zou, Y-R., Kottman, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in hematopoiesis and in cerebellar development. Nature 393, 595–598 (1998).

    Article  CAS  Google Scholar 

  20. Zheng, J. et al. Intracellular CXCR4 signalling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J. Neuroimmunol. 98, 185–200 (1999).

    Article  CAS  Google Scholar 

  21. Zheng, J. et al. Lymphotropic virions affect chemokine receptor-mediated neural signalling and apoptosis: implications for human immunodeficiency virus type 1-associated dementia. J. Virol. 73, 8256–8267 (1999).

    CAS  Google Scholar 

  22. Limatola, C. et al. SDF-1α-mediated modulation of synaptic transmission in rat cerebellum. Eur. J. Neurosci. 12, 2497–2504 (2000).

    Article  CAS  Google Scholar 

  23. Kaul, M., Garden, G. A. & Lipton, S. A. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410, 988–994 (2001).

    Article  CAS  Google Scholar 

  24. Rossi, D. J., Oshima, T. & Attwell, D. Glutamate release in severe brain ischemia is mainly by reversed uptake. Nature 403, 316–321 (2000).

    Article  CAS  Google Scholar 

  25. Endres, M. J. et al. CD4 independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 87, 745–756 (1996).

    Article  CAS  Google Scholar 

  26. Donzella, G. A. et al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat. Med. 4, 72–77 (1998).

    Article  CAS  Google Scholar 

  27. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  Google Scholar 

  28. Kriegler, M., Perez, C., DeFay, K., Albert, I. & Lu, S. D. A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53, 45–53 (1988).

    Article  CAS  Google Scholar 

  29. Gearing, A. J. et al. Processing of tumor necrosis factor-alpha precursor by metalloproteinases. Nature 370, 555–557 (1994).

    Article  CAS  Google Scholar 

  30. Favata, M. F. et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 18623–18632 (1998).

    Article  CAS  Google Scholar 

  31. Benveniste, E. N. & Benos, D. J. TNF-α and IFN-γ-mediated signal transduction pathways: effects on glial cell gene expression and function. FASEB J. 9, 1577–1584 (1995).

    Article  CAS  Google Scholar 

  32. Szatkowski. M., Barbour, B. & Attwell, D. Nonvesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348, 443–446 (1990).

    Article  CAS  Google Scholar 

  33. Kimelberg, H. K., Goderie, S. K., Higman, S., Pang, S. & Waniewski, R. A. Swelling-induced release of glutamate, aspartate and taurine from astrocyte cultures. J. Neurosci. 10, 1583–1591 (1990).

    Article  CAS  Google Scholar 

  34. Giulian, D. & Baker, T. J. Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163–2178 (1986).

    Article  CAS  Google Scholar 

  35. Dreyer, E. & Lipton, S. A. The coat protein gp120 of HIV-1 inhibits astrocyte uptake of excitatory amino acids via macrophage arachidonic acid. Eur. J. Neurosci. 7, 2502–2507 (1995).

    Article  CAS  Google Scholar 

  36. Streit, W. in Neuroglia (eds. Kettenmann, H. & Ransom, B.R.) 85–96 (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  37. Noda, M., Nakanishi, H., Nabekura, J. & Akaike, N. AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 20, 251–258 (2000).

    Article  CAS  Google Scholar 

  38. Toggas, S. M. et al. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367, 188–192 (1994).

    Article  CAS  Google Scholar 

  39. Bagetta, G. et al. Involvement of interleukin-1β in the mechanism of human immunodeficiency virus type 1 (HIV-1) recombinant protein gp120-induced apoptosis in the neocortex of rat. Neuroscience 89, 1051–1066 (1999).

    Article  CAS  Google Scholar 

  40. Hesselgesser, J. et al. CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Curr. Biol. 7, 112–121 (1997).

    Article  CAS  Google Scholar 

  41. Braun, J. S. et al. Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nat. Med. 59, 298–302 (1999).

    Article  Google Scholar 

  42. Futaki, N. et al. NS-398, a new anti-inflammatory agent selectively inhibits prostaglandin G/H synthase/cyclooxygenase 2 (COX-2) activity in vitro. Prostaglandins 47, 55–59 (1994).

    Article  CAS  Google Scholar 

  43. Innocenti, B., Parpura, V. & Haydon, P. G. Imaging extracellular waves of glutamate during calcium signalling in cultured astrocytes. J. Neurosci. 20, 1800–1808 (2000).

    Article  CAS  Google Scholar 

  44. Guthrie, P. B. et al. ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520–528 (1999).

    Article  CAS  Google Scholar 

  45. Genis, P. et al. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage–astroglia interactions: implications for the neuropathogenesis of HIV disease. J. Exp. Med. 176, 1703–1718 (1992).

    Article  CAS  Google Scholar 

  46. Fine, S. M. et al. Tumor Necrosis Factor α inhibits glutamate uptake by primary human astrocytes. J. Biol. Chem. 271, 15303–15306 (1996).

    Article  CAS  Google Scholar 

  47. Meda, L. et al. Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650 (1995).

    Article  CAS  Google Scholar 

  48. Vescovi, A. L. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83 (1999).

    Article  CAS  Google Scholar 

  49. Abele, A. E., Scholz, K. P., Scholz, W. K. & Miller, R. J. Excitotoxicity induced by enhanced excitatory neurotransmission in cultured hippocampal pyramidal neurons. Neuron 4, 413–419 (1990).

    Article  CAS  Google Scholar 

  50. Davis, C. B. et al. Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. J. Exp. Med. 186, 1793–1798 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from European Community (QLK6-CT1999-02203), Ministero Università e Ricerca Scientifica e Tecnologica of Italy (Cofin 1998-1999 and 2000-2001), Telethon-Italy (754) to A.V., Istituto Superiore di Sanita of Italy (II National Program on AIDS Research, 2/264; National Program on Alzheimer's Disease) to J.M. and European Fund for regional development (Calabria Region, POP 1994/99) to G.B. M.D. is the recipient of a post-doctoral fellowship from the Gobierno Vasco. We thank R. Paoletti, G. Racagni and S. Nicosia for support and advice; A. Pandiella, S. Vesce and P. Panzarasa for their contributions during the early phases of the project; C. Del Duca, S. Piccirilli, A. Pietropoli, E. Pilati, P. Podini, G. Racchetti, M. Treccozzi and C. Valori for their help with experiments; ALEMBIC, San Raffaele Scientific Institute, Milan, for confocal microscopy images; C. Montecucco for supplying purified tetanus neurotoxin; British Biotech Pharmaceuticals for their gift of BB3103; and D. Dunlap for the revision of the text. M. Baggiolini, D. Littman, P. Lusso, G. Poli and A. Malgaroli for commentson previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Volterra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezzi, P., Domercq, M., Brambilla, L. et al. CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nat Neurosci 4, 702–710 (2001). https://doi.org/10.1038/89490

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing