Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role for supplementary motor area cells in planning several movements ahead

Abstract

To achieve a volitional goal, we need to execute multiple movements in a specific temporal order. After repetitive performance of a particular sequence of movements, we are able to memorize and execute the whole sequence without external guidance. Where and how in the brain do we store information necessary for the orderly performance of multiple movements? We have found a group of cells in the cerebral cortex of monkeys whose activity is exclusively related to a sequence of multiple movements performed in a particular order. Such cellular activity exists in the supplementary motor area1,2, but not in the primary motor cortex3,4. We propose that these cells contribute a signal about the order of forthcoming multiple movements, and are useful for planning and coding of several movements ahead.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wiesendanger, M. Rev. Physiol. Biochem. Pharmacol. 103, 1–59 (1986).

    CAS  PubMed  Google Scholar 

  2. Tanji, J. Neurosci. Res. 19, 251–268 (1994).

    Article  CAS  Google Scholar 

  3. Porter, R. & Lemon, R. Corticospinal Function and Voluntary Movement (Clarendon, Oxford, 1993).

    Google Scholar 

  4. Passingham, R. E. The Frontal Lobes and Voluntary Action (Oxford University Press, Oxford, 1993).

    Google Scholar 

  5. Luppino, G., Matelli, M., Camarda, R. M. & Rizzolatti, G. J. comp. Neurol. 311, 463–482 (1991).

    Article  CAS  Google Scholar 

  6. Matsuzaka, Y., Aizawa, H. & Tanji, J. J. Neurophysiol. 68, 653–662 (1992).

    Article  CAS  Google Scholar 

  7. Brinkman, C. & Porter, R. J. Neurophysiol. 42, 681–709 (1979).

    Article  CAS  Google Scholar 

  8. Tanji, J. & Kurata, K. J. Neurophysiol. 48, 633–653 (1982).

    Article  CAS  Google Scholar 

  9. Crutcher, M. D. & Alexander, G. E. J. Neurophysiol. 64, 151–163 (1990).

    Article  CAS  Google Scholar 

  10. Chen, D., Hyland, B., Maier, V., Palmeri, A. & Wiesendanger, M. Somatosens. Motor Res. 8, 27–44 (1991).

    Article  CAS  Google Scholar 

  11. Ikeda, A., Lüders, H. O., Burgess, R. C. & Shibasaki, H. Brain 115, 1017–1043 (1992).

    Article  Google Scholar 

  12. Colebatch, J. G., Deiber, M.-P., Passingham, R. E., Friston, K. J. & Frackowiak, R. S. J. J. Neurophysiol. 65, 1392–1401 (1991).

    Article  CAS  Google Scholar 

  13. Matelli, M. et al. Neuroreport 4, 1295–1298 (1993).

    Article  CAS  Google Scholar 

  14. Deecke, L., Grözinger, B. & Kornhuber, H. H. Biol. Cybern. 23, 99–119 (1976).

    Article  CAS  Google Scholar 

  15. Orgogozo, J. M. & Larsen, B. Science 206, 847–850 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Roland, P. E., Larsen, B., Lassen, N. A. & Skinhøj, E. J. Neurophysiol. 43, 118–136 (1980).

    Article  CAS  Google Scholar 

  17. Tanji, J. & Kurata, K. J. Neurophysiol. 53, 129–141 (1985).

    Article  CAS  Google Scholar 

  18. Tanji, J., Okano, K. & Sato, K. C. Nature 327, 618–620 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Lang, W., Obrig, H., Lindinger, G., Cheyne, D. & Deecke, L. Expl Brain Res. 79, 504–514 (1990).

    Article  CAS  Google Scholar 

  20. Mushiake, H., Inase, M. & Tanji, J. J. Neurophysiol. 66, 705–718 (1991).

    Article  CAS  Google Scholar 

  21. Deiber, M.-P. et al. Expl Brain Res. 84, 393–402 (1991).

    Article  CAS  Google Scholar 

  22. Laplane, D., Talairach, J., Meininger, V., Bancaud, J. & Orgogozo, J. M. J. Neurol. Sci. 34, 301–314 (1977).

    Article  CAS  Google Scholar 

  23. Dick, J. P. R., Benecke, R., Rothwell, J. C., Day, B. L. & Marsden, C. D. Movement Disorders 1, 255–266 (1986).

    Article  CAS  Google Scholar 

  24. Brinkman, C. J. Neurosci. 4, 918–929 (1984).

    Article  CAS  Google Scholar 

  25. Halsband, U., Ito, N., Tanji, J. & Freund, H.-J. Brain 116, 243–266 (1993).

    Article  Google Scholar 

  26. Rizzolatti, G. et al. Expl Brain Res. 82, 337–350 (1990).

    Article  CAS  Google Scholar 

  27. Tanji, J., Okano, K. & Sato, K. C. J. Neurophysiol. 60, 325–343 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanji, J., Shima, K. Role for supplementary motor area cells in planning several movements ahead. Nature 371, 413–416 (1994). https://doi.org/10.1038/371413a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371413a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing