Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational control by CPEB: a means to the end

Key Points

  • The regulated translation of messenger RNAs is crucial for many developmental processes, including oocyte maturation, establishment of the embryonic axes, and regulation of 'synaptic memory' in the central nervous system.

  • The initiation complex is a key target for both positive and negative regulators of translation. Particular features of an mRNA also affect its translational efficiency, including sequences that lie in its 3′ and 5′ untranslated regions (UTRs).

  • During oocyte maturation, there is an intricate network of translational activation and repression of stored maternal mRNAs. One crucial factor for this is the serine/threonine kinase Mos, one of whose functions is to induce translational activation of cyclin B1 mRNA. Intriguingly, the translation of Mos itself must first be activated during maturation.

  • Many dormant mRNAs, including Mos and cyclin B1, contain short poly(A) tails, which must be elongated for translational initiation to occur. Polyadenylation requires two elements in the 3′ UTR: the hexanucleotide AAUAAA and the cytoplasmic polyadenylation element (CPE), the latter of which varies in copy number and distance from the hexanucleotide.

  • The CPE is bound by CPEB, which, through an interaction with the AAUAAA-binding factor (CPSF), recruits poly(A) polymerase to the mRNA, and thus triggers polyadenylation. CPEB is also proposed to act indirectly as a masking factor, but the main protein that mediates translational repression is maskin, an eIF4E-associated factor. An attractive model is that polyadenylation relieves repression by triggering dissociation of maskin from the eIF4E, the cap binding protein.

  • After oocyte maturation, most CPEB is destroyed, apart from that associating with spindles and centrosomes. Maskin also localizes to those structures, and both proteins are proposed to regulate translation initiation during embryonic cell divisions. One crucial target is thought to be cyclin B1 mRNA.

  • A possible role for CPEB-mediated translational activation in neuronal synapses is indicated by the localization of CPEB in postsynaptic densities of hippocampal neurons. At this locale, synaptic plasticity may be controlled, as least in part, by the polyadenylation and translation of CPE-containing mRNAs.

Abstract

The regulated translation of messenger RNA is essential for cell-cycle progression, establishment of the body plan during early development, and modulation of key activities in the central nervous system. Cytoplasmic polyadenylation, which is one mechanism of controlling translation, is driven by CPEB — a highly conserved, sequence-specific RNA-binding protein that binds to the cytoplasmic polyadenylation element, and modulates translational repression and mRNA localization. What are the features and functions of this multifaceted protein?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Translational initiation in eukaryotes.
Figure 2: 3′–5′ interactions: circles of mRNA.
Figure 3: Key events during Xenopus laevis oocyte maturation and early embryogenesis.
Figure 4: CPEB-mediated translational control.
Figure 5: Cap-specific 2′-O-methylation.

Similar content being viewed by others

References

  1. Muckenthaler, M., Gray, N. K. & Hentze, M. W. IRP-1 binding to ferritin mRNA prevents the recruitment of the small ribosomal subunit by the cap-binding complex eIF4F. Mol. Cell 2 383–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Ostareck, D. H., Ostareck-Lederer, A., Shatsky, I. N. & Hentze, M. W. Lipoxygenase mRNA silencing in erythroid differentiation: the 3′UTR regulatory complex controls 60S ribosomal subunit joining. Cell 104, 281–290 (2001).Shows that LOX mRNA translation is controlled by a specific mRNA–protein complex formed between the differentiation control element (DICE) in the 3′ untranslated region (UTR). hnRNPs K and E1 bind to the DICE and impair the joining of the 60S ribosomal subunit to form a translation competent 80S ribosome.

    Article  CAS  PubMed  Google Scholar 

  3. Hershey, J. W. B. & Merrick, W. C. in Pathway and Mechanism of Initiation of Protein Synthesis 33–88 (Cold Spring Harbor Laboratory Press, New York, 2000).

    Google Scholar 

  4. Lamphear, B. J., Kirchweger, R., Skern, T. & Rhoads, R. E. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 270, 21975–21983 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Mader, S., Lee, H., Pause, A. & Sonenberg, N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990–4997 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korneeva, N. L., Lamphear, B. J., Hennigan, F. L., Merrick, W. C. & Rhoads, R. E. Characterization of the two eIF4A-binding sites on human eIF4G-1. J. Biol. Chem. 276, 2872–2879 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Tarun, S. Z. & Sachs, A. B. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15, 7168–7177 (1996).Shows that the proteins bound to the mRNA cap (eIF4G) and poly(A) tail (PABP) are physically associated. These data support the model that the Pabl–poly(A) tail complex on mRNA can interact with the cap structure through eIF4G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Le, H. et al. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J. Biol. Chem. 272, 16247–16255 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Imataka, H., Gradi, A. & Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480–7489 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pestova, T. V. et al. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403, 332–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Gingras, A. C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 13–63 (1999).

    Article  Google Scholar 

  12. Gray, N. K. & Hentze, M. W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13, 3882–3891 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R. & Richter, J. D. Maskin is a CPEB-associated factor that transiently interacts with eIF-4E. Mol. Cell 4, 1017–1027 (1999).Describes a new CPEB-associated protein termed maskin. Maskin binds directly to eIF4E through a peptide sequence that is conserved among elF4E-binding proteins. The maskin–elF4E interaction is substantially reduced during oocyte maturation.

    Article  CAS  PubMed  Google Scholar 

  14. Tarun, S. Z., Wells, S. E., Deardorff, J. A. & Sachs, A. B. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. Proc. Natl Acad. Sci. USA 94, 9046–9051 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tian, J., Kim, S., Heilig, E. & Ruderman, J. V. Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation. Proc. Natl Acad. Sci. USA 97 14358–14363 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bayaa, M., Booth, R. A., Sheng, Y. & Liu, X. J. The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc. Natl Acad. Sci. USA 97, 12607–12612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sagata, N. Meiotic maturation and arrest in animal oocytes. Semin. Cell Dev. Biol. 9, 535–537 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Yamashita, M. Molecular mechanisms of meiotic maturation and arrest in fish and amphibian oocytes. Semin. Cell Dev. Biol. 9, 569–579 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Nebreda, A. R. & Ferby, I. Regulation of the meiotic cell cycle in oocytes. Curr. Opin. Cell Biol. 12, 666–675 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Roy, L. M. et al. The cyclin B2 component of MPF is a substrate for the c-mos(xe) proto-oncogene product. Cell 61, 825–831 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. De Moor, C. H. & Richter, J. D. The mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol. Cell. Biol. 17, 6419–6426 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ballantyne, S., Daniel, D. L. Jr & Wickens, M. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol. Biol. Cell 8, 1633–1648 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frank-Vaillant, M., Jessus, C., Ozon, R., Maller, J. L. & Haccard, O. Two distinct mechanisms control the accumulation of cyclin B1 and Mos in Xenopus oocytes in response to progesterone. Mol. Biol. Cell 10, 3279–3288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sagata, N., Watanabe, N., Vande Woude, G. F. & Ikawa, Y. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342, 51251–51258 (1989).

    Article  Google Scholar 

  25. Hashimoto, N. et al. Parthenogenetic activation of oocytes in c-mos-deficient mice. Nature 370, 68–71 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Bhatt, R. R. & Ferrell, J. E. Jr The protein kinase p90rsk as an essential mediator of cytostatic factor activity. Science 286, 1362–1365 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Gross, S. D., Schwab, M. S., Lewellyn, A. L. & Maller, J. L. Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science 286, 1365–1367 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Fox, C. A., Sheets, M. D. & Wickens, M. P. Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 3, 2151–2162 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. McGrew, L. L., Dworkin-Rastl, E., Dworkin, M. B. & Richter, J. D. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 3, 803–815 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. McGrew, L. L. & Richter, J. D. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF. EMBO J. 9, 3743–3751 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barkoff, A. F., Dickson, K. S., Gray, N. K. & Wickens, M. Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation. Dev. Biol. 220, 97–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Ballantyne, S., Daniel, D. L. Jr & Wickens, M. A dependent pathway of cytoplasmic polyadenylation reactions linked to cell cycle control by c-mos and CDK1 activation. Mol. Biol. Cell 8, 1633–1648 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakahata, S. et al. Biochemical identification of Xenopus Pumilio as a sequence-specific Cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog (Xcat-2) and a cytoplasmic polyadenylation element–binding protein (CPEB). J. Biol. Chem. (in the press).

  34. Hake, L. E. & Richter, J. D. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79, 617–627 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Stebbins-Boaz, B., Hake, L. E. & Richter, J. D. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J. 15, 2582–2592 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andresson, T. & Ruderman, J. V. The kinase Eg2 is a component of the Xenopus oocyte progesterone-activated signaling pathway. EMBO J. 17, 5627–5637 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frank-Vaillant, M. et al. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J. Cell Sci. 113, 1127–1138 (2000).

    CAS  PubMed  Google Scholar 

  38. Mendez, R. et al. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307 (2000).Shows that an early site-specific phosphorylation of CPEB is necessary and sufficient for the activation of c-mos mRNA polyadenylation and its subsequent translation, as well as for oocyte maturation. This regulatory phosphorylation event is catalysed by Eg2, a member of the Aurora family of serine/threonine protein kinases.

    Article  CAS  PubMed  Google Scholar 

  39. Mendez, R., Murthy, K. G., Ryan, K., Manley, J. L. & Richter, J. D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6, 1253–1259 (2000).The authors show that the phosphorylation event described in reference 24 stimulates the direct interaction between CPEB and CPSF. The Eg2-stimulated and CPE-dependent polyadenylation is reconstituted in vitro using purified components.

    Article  CAS  PubMed  Google Scholar 

  40. Katsu, Y., Minshall, N., Nagahama, Y. & Standart, N. Ca2+ is required for phosphorylation of clam p82/CPEB in vitro: implications for dual and independent roles of MAP and Cdc2 kinases. Dev. Biol. 209, 186–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Fox, C. A., Sheets, M. D., Wahle, E. & Wickens, M. P. Polyadenylation of maternal mRNA during oocyte maturation: poly(A) addition in vitro requires a regulated RNA binding activity and a poly(A) polymerase. EMBO J. 11, 5021–5032 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bilger, A., Fox, C. A., Wahle, E. & Wickens, M. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev. 8, 1106–1116 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Dickson, K. S., Bilger, A., Ballantyne, S. & Wickens, M. P. The cleavage and polyadenylation specificity factor in Xenopus laevis oocytes is a cytoplasmic factor involved in regulated polyadenylation. Mol. Cell. Biol. 19, 5707–5717 (1999).The authors report the cloning of the 100-kDa subunit of Xenopus CPSF, which is predominantly localized to the cytoplasm. This cytoplasmic CPSF forms a specific complex with RNAs that contain both the cytoplasmic polyadenylation element (CPE) and the polyadenylation element AAUAAA. When the 100-kDa subunit is immunodepleted, there is a reduction of cytoplasmic polyadenylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ballantyne, S., Bilger, A., Astrom, J., Virtanen, A. & Wickens, M. Poly(A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development. RNA 1, 64–78 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gebauer, F. & Richter, J. D. Cloning and characterization of a Xenopus poly(A) polymerase. Mol. Cell. Biol. 15, 1422–1430 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, J., Hyman, L. & Moore, C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol. Mol. Biol. Rev. 63, 405–445 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Colgan, D. F., Murthy, K. G., Prives, C. & Manley, J. L. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 384, 282–285 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Colgan, D. F., Murthy, K. G., Zhao, W., Prives, C. & Manley, J. L. Inhibition of poly(A) polymerase requires p34cdc2/cyclin B phosphorylation of multiple consensus and non-consensus sites. EMBO J. 17, 1053–1062 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Moor, C. H. & Richter, J. D. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J. 18, 2294–2303 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stutz, A. et al.. Masking, unmasking, and regulated polyadenylation cooperate in the translational control of a dormant mRNA in mouse oocytes. Genes Dev. 12, 2535–2548 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tay, J., Hodgman, R. & Richter, J. D. The control of cyclin B1 mRNA translation during mouse oocyte maturation. Dev. Biol. 221, 1–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Minshall, N., Walker, J., Dale, M. & Standart, N. Dual roles of p82, the clam CPEB homolog, in cytoplasmic polyadenylation and translational masking. RNA 5, 27–38 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tarun, S. Z. & Sachs, A. B. A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9, 2997–3007 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Preiss, T. & Hentze, M. W. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392, 516–520 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Kessler, S. H. & Sachs, A. B. RNA recognition motif 2 of yeast Pab1p is required for its functional interaction with eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 18, 51–57 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wakiyama, M., Imataka, H. & Sonenberg, N. Interaction of eIF4G with poly(A)-binding protein stimulates translation and is critical for Xenopus oocyte maturation. Curr. Biol. 10, 1147–1150 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Zelus, B. D., Giebelhaus, D. H., Eib, D. W., Kenner, K. A. & Moon, R. T. Expression of the poly(A)-binding protein during development of Xenopus laevis. Mol. Cell. Biol. 9, 2756–2760 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Voeltz, G. K., Ongkasuwan, J., Standart, N. & Steitz, J. A. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 15, 774–788 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paris, J., Swenson, K., Piwnica-Worms, H. & Richter, J. D. Maturation-specific polyadenylation: in vitro activation by p34cdc2 and phosphorylation of a 58-kD CPE-binding protein. Genes Dev. 5, 1697–1708 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Reverte, C. G., Ahearn, M. D. & Hake, L. E. CPEB degradation during Xenopus oocyte maturation requires a pest domain and the 26S proteasome. Dev. Biol. 231, 447–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Morley, S. J. & Pain, V. M. Hormone-induced meiotic maturation in Xenopus oocytes occurs independently of p70s6k activation and is associated with enhanced initiation factor (eIF)-4F phosphorylation and complex formation. J. Cell. Sci. 108, 1751–1760 (1995).

    CAS  PubMed  Google Scholar 

  62. Kuge, H. & Richter, J. D. Cytoplasmic 3′ poly(A) addition induces 5′ cap ribose methylation: implications for translational control of maternal mRNA. EMBO J. 14, 6301–6310 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuge, H., Brownlee, G. G., Gershon, P. D. & Richter, J. D. Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res. 26, 3208–3214 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gillian-Daniel, D. L., Gray, N. K., Astrom, J., Barkoff, A. & Wickens, M. Modifications of the 5′ cap of mRNAs during Xenopus oocyte maturation: independence from changes in poly(A) length and impact on translation. Mol. Cell. Biol. 18, 6152–6163 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schnierie, B. S., Gershon, P. D. & Moss, B. Cap-specific mRNA (nucleoside-O2′-)-methyltransferase and poly(A) polymerase stimulatory activities of Vaccinia virus are mediated by a single protein. Proc. Natl Acad. Sci. USA 89, 2897–2901 (1992).

    Article  Google Scholar 

  66. Groisman, I. et al. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103, 435–447 (2000).The authors show that CPEB interacts with microtubules and is involved in the localization of cyclin B1 mRNA to the mitotic apparatus. Disruption of polyadenylation-induced translation inhibits cell division and promote spindle and centrosome defects.

    Article  CAS  PubMed  Google Scholar 

  67. Minshull, J., Blow, J. J. & Hunt, T. Translation of cyclin mRNA is necessary for extracts of activated Xenopus eggs to enter mitosis. Cell 56, 947–956 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Murray, A. W. & Kirschner, M. W. Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Huang, J. & Raff, J. W. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hagting, A., Karlsson, C., Clute, P., Jackman, M. & Pines, J. MPF localization is controlled by nuclear export. EMBO J. 17, 4127–4138 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Christerson, L. B. & McKearin, D. M. orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis. Genes Dev. 8, 614–628 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Chang, J. S., Tan, L. & Schedl, P. The Drosophila CPEB homolog, orb, is required for oskar protein expression in oocytes. Dev. Biol. 215, 91–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Tan, L., Chang, J. S., Costa, A. & Schedl, P. An autoregulatory feedback loop directs the localized expression of the Drosophila CPEB protein Orb in the developing oocyte. Development 128, 1159–1169 (2001).

    CAS  PubMed  Google Scholar 

  74. Lantz, V., Chang, J. S., Horabin, J. I., Bopp, D. & Schedl, P. The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity. Genes Dev. 8, 598–613 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Huynh, J. & St Johnston, D. The role of BicD, egl, orb and the microtubules in the restriction of meiosis to the Drosophila oocyte. Development 127, 2785–2794 (2000).

    CAS  PubMed  Google Scholar 

  76. Bally-Cuif, L., Schatz, W. J. & Ho, R. K. Characterization of the zebrafish Orb/CPEB-related RNA binding protein and localization of maternal components in the zebrafish oocyte. Mech. Dev. 77, 31–47 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Schroeder, K. E., Condic, M. L., Eisenberg, L. M. & Yost, H. J. Spatially regulated translation in embryos: asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus. Dev. Biol. 214, 288–297 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Gebauer, F., Xu, W., Cooper, G. M. & Richter, J. D. Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J. 13, 5712–5720 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Salles, F. J., Lieberfarb, M. E., Wreden, C., Gergen, J. P. & Strickland, S. Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs. Science 266, 1996–1999 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Gebauer, F. & Richter, J. D. Mouse cytoplasmic polyadenylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylation elements of c-mos mRNA. Proc. Natl Acad. Sci. USA 93, 14602–14607 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, L. et al. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of α-CaMKII mRNA at synapses. Neuron 21, 1129–1139 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273, 1402–1406 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Huber, K. M., Kayser, M. S. & Bear, M. F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1257 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Martin, K. C., Barad, M. & Kandel, E. R. Local protein synthesis and its role in synapse-specific plasticity. Curr. Opin. Neurobiol. 10, 587–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Casadio, A. et al. A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99, 221–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Martin, K. C. et al. Synapse-specific, long-term facilitation of Aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91, 927–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Luitjens, C., Gallegos, M., Kraemer, B., Kimble, J. & Wickens, M. CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev. 14, 2596–2609 (2000).The authors describe four CPEB homologues in C. elegans: cpb-1, cpb-2, cpb-3 and fog-1 . RNA interference assays show that CPB-1 and FOG-1 have key functions in spermatogenesis whereas none seems to be required for oogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hake, L. E., Mendez, R. & Richter, J. D. Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol. Cell. Biol. 18, 685–693 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–11890 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tay, J. & Richter, J. D. Germ cell differentiation and synaptonemal complex formation are disrupted in CPEB knockout mice. Dev. Cell (in the press).The authors show that in Cpeb -knockout mice, germ cell development is arrested at the pachytene stage. This defect originates in a failure of two CPE-containing mRNAs that encode synaptonemal complex proteins to be translated.

  91. Wells, S. E., Hillner, P. E., Vale, R. D. & Sachs, A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140 (1998).The authors reconstitute the eIF4E–eIF4G–PABP complex with recombinant proteins, and show by atomic force microscopy that the complex can circularize capped, polyadenylated RNA.

    Article  CAS  PubMed  Google Scholar 

  92. Gallie, D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116 (1991).

    Article  CAS  PubMed  Google Scholar 

  93. Craig, A. W., Haghighat, A., Yu, A. T. & Sonenberg, N. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature 392, 520–523 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Ostareck, D. H. et al. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell 89, 597–606 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Supplementary information

Related links

Related links

DATABASE LINKS

eIF4E

eIF4A

eIF4G

PABP

eIF3

eIF2

IRP

Mos

MAPK

cyclin B

p90rsk

cdc2

CPEB

CPSF

poly(A) polymerase

Orb

oskar

gurken

Zorba

FURTHER INFORMATION

Richter lab

Glossary

POLYSOMES

Complex of ribosomes bound to a single messenger RNA molecule.

GERM LAYERS

Embryonic cell layers (endoderm, mesoderm and ectoderm) from which the embryonic organs and structures are derived.

eIF3

Eukaryotic translation initiation factor that mediates dissociation of the 40S and 60S ribosomal subunits and the recruitment of the Met–tRNA–eIF2 complex and the 40S ribosomal subunit to the messenger RNA.

UTR

Non-coding portions of the messenger RNA that precede the starting codon (5′ UTR) or follow the termination codon (3′ UTR).

40S PRE-INITIATION COMPLEX

Ribonucleoprotein particle that includes the transfer RNA, the 40S ribosomal subunit and the eIF2.

eIF2

Eukaryotic translation-initiation factor that mediates the recruitment of the Met–tRNAi to the 40S ribosomal subunit.

eIF5B

Eukaryotic translation-initiation factor that mediates recruitment of the 60S ribosomal subunit to the mRNA-associated 40S ribosomal subunit.

MONOSOME

Single ribosome bound to a mRNA.

hnRNPs

Proteins that bind the heterogeneous nuclear RNA (hnRNA) and that are involved in splicing, RNA transport and translation.

PROPHASE

Initial phase of the cell cycle (mitosis or meiosis), in which the chromatin is condensed. Meiosis contains two prophases not separated by a DNA-replication event.

METAPHASE

Phase of the cell cycle (mitosis or meiosis) in which the nuclear membrane breaks down and the chromosomes are arranged on the equator of the spindle. Meiosis contains two metaphases not separated by a DNA-replication event.

CDC2

Serine/threonine kinase that constitutes the catalytic subunit of the M-phase-promoting factor (MPF).

CYCLIN B1

Regulatory subunit of the M-phase-promoting factor (MPF).

PARTHENOGENESIS

Cell division of an egg without fertilization.

ZINC FINGER

Nucleic-acid-binding protein structures containing cysteine or histidine residues at both extremities of the domain, which are involved in the tetrahedral coordination of a zinc atom.

RNA-RECOGNITION MOTIF

(RRM). Sequence-specific RNA-recognition domain present in RNA-binding proteins. It consists of 90 amino acids in α-helical and β-sheet topology, arranged in an αβαββαβ structure.

AURORA KINASES

Family of serine/threonine kinases required for bipolar spindle assembly and chromosome segregation.

NUCLEAR LOCALIZATION SIGNAL

Small stretch of amino acids recognized by the importin protein complex that directs the translocation of the targeted protein through the nuclear pore into the nucleus.

RNA INTERFERENCE

(RNAi). A technique in which double-stranded RNA targeted against a gene product is introduced into cells or an organism, resulting in null or hypomorphic phenotypes.

PAM MATRIX

A matrix of weights derived from how often different amino acids replace other amino acids during evolution. PAM stands for 'per cent accepted mutations', and these were inferred from the types of change observed in these proteins. Every change was tabulated and entered in a matrix enumerating all possible amino-acid changes.

ANIMAL POLE BLASTOMERES

Embryonic cells that will form the ectoderm.

3′-DEOXYADENOSINE

Analogue of ATP that acts as a chain terminator during RNA synthesis or polyadenylation.

POSTSYNAPTIC DENSITY

Dense structure beneath the postsynaptic site, in which an array of synaptic proteins is anchored to a specific set of cytoskeletal and/or signalling proteins.

αCAMKII

Calcium–calmodulin- dependent kinase II; activated in response to synaptic activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendez, R., Richter, J. Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2, 521–529 (2001). https://doi.org/10.1038/35080081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35080081

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing