Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA methylation in health and disease

Abstract

DNA methylation has recently moved to centre stage in the aetiology of human neurodevelopmental syndromes such as the fragile X, ICF and Rett syndromes. These diseases result from the misregulation of genes that occurs with the loss of appropriate epigenetic controls during neuronal development. Recent advances have connected DNA methylation to chromatin-remodelling enzymes, and understanding this link will be central to the design of new therapeutic tools.

Key Points

Summary:

  • DNA methylation is the most common covalent modification of the human genome.

  • DNA methylation is important in imprinting, X-inactivation, cancer and for the developmental control of gene expression.

  • DNA methylation is directly connected to transcriptional repression through chromatin-remodelling complexes

  • Mutations in DNMT3B lead to ICF syndrome, a rare, recessive autosomal disorder.

  • Mutations in the methyl-CpG-binding protein MeCP2 lead to Rett syndrome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA methylation, CpG islands and genome defence.
Figure 2: Schematic structure of the three catalytically active DNA methyltransferases in mammals showing the N-terminal regulatory and C-terminal catalytic domains, and other regions with known or proposed functions.
Figure 3: Summary of mutations identified in the MECP2 protein in people with Rett syndrome62,88.
Figure 4: The mechanism whereby DNA methylation and histone deacetylation cooperate to repress transcription.
Figure 5: Summary of mutations in DNA methyltransferase 3B (DNMT3B) identified in ICF syndrome patients3,83,84.
Figure 6: Schematic of the fragile X mental retardation 1 (FMR1) gene showing the location of the CGG repeat within the 5′-untranslated region of exon 1.

Similar content being viewed by others

References

  1. Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195 –3205 (1996).

    CAS  PubMed  Google Scholar 

  2. Li, E., Bestor, T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Okano, M., Bell, D. W., Haber, D. A. & Li, W. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999). References 2 and 3 describe the effects of loss of Dnmt1, Dnmt3a and Dnmt3b on mouse development.

    CAS  PubMed  Google Scholar 

  4. Bird, A. P. Gene number, noise reduction and biological complexity. Trends Genet. 11, 94–99 ( 1995).

    CAS  PubMed  Google Scholar 

  5. Steinbach, O. C., Wolffe, A. P. & Rupp, R. A. Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature 389, 395–399 (1997).

    CAS  PubMed  Google Scholar 

  6. Mannervik, M., Nibu, Y., Zhang, H. & Levine, M. Transcriptional coregulators in development. Science 284, 606–609 (1999).

    CAS  PubMed  Google Scholar 

  7. Baylin, S. B., Herman, J. G., Herman, J. R., Vertino, P. M. & Issa, J.-P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196 (1998).

    CAS  PubMed  Google Scholar 

  8. Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age . Nature Genet. 21, 163– 166 (1999).References 7 and 8 are good reviews on the roles of DNA methylation in cancer.

    CAS  PubMed  Google Scholar 

  9. Jaenisch, R. DNA methylation and imprinting: why bother? Trends Genet. 13, 323–329 (1997).

    CAS  PubMed  Google Scholar 

  10. Jirtle, J. L., Sander, M. & Barrett, J. C. Genomic imprinting and environmental disease susceptibility . Environ. Health Perspect. 108, 271– 278 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tyko, B. & Ashkenas, J. Epigenetics and its role in disease . J. Clin. Invest. 105, 245– 246 (2000).

    Google Scholar 

  12. Post, W. S. et al. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc. Res. 43, 985–991 ( 1999).

    CAS  PubMed  Google Scholar 

  13. Cooper, D. N. & Krawczak, M. Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes. Hum. Genet. 83, 181–188 (1989).

    CAS  PubMed  Google Scholar 

  14. Bird, A., Taggart, M., Frommer, M., Miller, O. J. & Macleod, D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 10, 91–99 (1985).

    Google Scholar 

  15. Antequera, F. & Bird, A. Number of CpG islands and genes in human and mouse. Proc. Natl Acad. Sci. USA 90, 11995–11999 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tazi, J. & Bird, A. Alternative chromatin structure at CpG islands. Cell 60, 909– 920 (1990).

    CAS  PubMed  Google Scholar 

  17. Jiricny, J. in Cancer Surveys: Genetic Instability in Cancer Vol. 28 47–68 (Imperial Cancer Research Fund, 1996).

    Google Scholar 

  18. Cooper, D. N. & Youssoufian, H. The CpG dinucleotide and human genetic disease. Hum. Genet. 78, 151– 155 (1988).

    CAS  PubMed  Google Scholar 

  19. Rideout, W. M. I., Coetzee, G. A., Olumi, A. F. & Jones, P. A. 5-methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249, 1288– 1290 (1990).

    CAS  PubMed  Google Scholar 

  20. Greenblatt, M. S., Bennett, W. P., Hollstein, M. & Harris, C. C. Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855– 4878 (1994).

    CAS  PubMed  Google Scholar 

  21. Bestor, T., Laudano, A., Mattaliano, R. & Ingram, V. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells . J. Mol. Biol. 203, 971– 983 (1988).

    CAS  PubMed  Google Scholar 

  22. Pradhan, S., Bacolla, A., Wells, R. D. & Roberts, R. J. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. 274, 33002–33010 (1999).

    CAS  PubMed  Google Scholar 

  23. Pradhan, S. et al. Baculovirus-mediated expression and characterization of the full-length murine DNA methyltransferase. Nucleic Acids Res. 25, 4666–4673 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Robertson, K. D. et al. The human DNA methyltransferases (DNMTs) 1, 3a, and 3b: Coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res. 27, 2291–2298 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leonhardt, H., Page, A. W., Weier, H. & Bestor, T. H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865–873 (1992).

    CAS  PubMed  Google Scholar 

  26. Chuang, L. S.-H. et al. Human DNA-(cytosine-5) methyltransferase-PCNA complex is a target for p21Waf1. Science 277 , 1996–2000 (1997).

    CAS  PubMed  Google Scholar 

  27. Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 ( 1993).

    CAS  PubMed  Google Scholar 

  28. Beard, C., Li, E. & Jaenisch, R. Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev. 9, 2325– 2334 (1995).

    CAS  PubMed  Google Scholar 

  29. Hung, M.-S. et al. Drosophila proteins related to vertebrate DNA (5-cytosine) methyltransferases. Proc. Natl Acad. Sci. USA 96, 11940–11945 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tweedie, S. et al. Vestiges of DNA methylation system in Drosophila melanogaster . Nature Genet. 23, 389– 390 (1999).

    CAS  PubMed  Google Scholar 

  31. Okano, M., Xie, S. & Li, E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genet. 19, 219 –220 (1998).

    CAS  PubMed  Google Scholar 

  32. Cao, X. et al. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc. Natl Acad. Sci. USA 97 , 4979–4984 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lyko, L. et al. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nature Genet. 23, 363–366 (1999).

    CAS  PubMed  Google Scholar 

  34. Vertino, P. M., Yen, R.-W. C., Gao, J. & Baylin, S. B. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5)-methyltransferase . Mol. Cell. Biol. 16, 4555– 4565 (1996).This paper uniquely describes the use of somatic cell knockout technology to delete the DNMT1 gene in a cancer cell line.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rhee, I. et al. CpG methylation is maintained in human cancer cells lacking DNMT1 . Nature 404, 1003–1007 (2000).

    CAS  PubMed  Google Scholar 

  36. Robertson, K. D. et al. DNMT1 forms a complex with Rb, E2F1, and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genet. 25, 338–342 (2000).

    CAS  PubMed  Google Scholar 

  37. Roundtree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor DMAP1, to form a complex at replication foci. Nature Genet. 25 , 269–277 (2000).

    Google Scholar 

  38. Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335– 340 (1997).

    CAS  PubMed  Google Scholar 

  39. Colot, V. & Rossignol, J.-L. Eukaryotic DNA methylation as an evolutionary device. BioEssays 21, 402–411 (1999).

    CAS  PubMed  Google Scholar 

  40. Montagna, M. et al. Identification of a 3 kb Alu-mediated BRCA1 gene rearrangement in two breast/ovarian cancer families. Oncogene 18, 4160–4165 (1999).

    CAS  PubMed  Google Scholar 

  41. Kazazian, J. H. H. & Moran, J. V. The impact of L1 retrotransposons on the human genome. Nature Genet. 19, 19–24 (1998).

    CAS  PubMed  Google Scholar 

  42. Kochanek, S., Renz, D. & Doerfler, W. Transcriptional silencing of human Alu sequences and inhibition of protein binding in the B box regulatory elements by 5′-CG-3′ methylation. FEBS Lett. 360, 115– 120 (1995).

    CAS  PubMed  Google Scholar 

  43. Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L. & Jaenisch, R. DNA hypomethylation leads to elevated mutation rates. Nature 395, 89– 93 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genet. 20, 116–117 (1998).

    CAS  PubMed  Google Scholar 

  45. Waugh-O'Neill, R. J., O'Neill, M. J. & Marshall-Graves, J. A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid . Nature 393, 68–72 (1988).

    Google Scholar 

  46. Flori, A. R., Lower, R., Schmitz-Drager, B. J. & Schulz, W. A. DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br. J. Cancer 80, 1312–1321 (1999).

    Google Scholar 

  47. Grassi, M., Girault, J. M., Wang, W. P., Thiery, J. P. & Jouanneau, J. Metastatic rat carcinoma cells express a new retrotransposon. Gene 233, 59–66 (1999).

    CAS  PubMed  Google Scholar 

  48. Puget, N. et al. A 1-kb Alu-mediated germ-line deletion removing BRCA1 exon 17. Cancer Res. 57, 828– 831 (1997).

    CAS  PubMed  Google Scholar 

  49. Rouyer, F., Simmler, M. C., Page, D. & Weissenbach, J. A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination. Cell 51, 417–425 ( 1987).

    CAS  PubMed  Google Scholar 

  50. Small, K., Iber, J. & Warren, S. T. Emerin deletion reveals a common X chromosome inversion mediated by inverted repeats. Nature Genet. 16, 96–99 (1997).

    CAS  PubMed  Google Scholar 

  51. Maloisel, L. & Rossignol, J.-L. Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev. 12, 1381–1389 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsieh, C.-L. & Lieber, M. R. CpG methylated minichromosomes become inaccessible for V(D)J recombination after undergoing replication. EMBO J. 11, 3115–325 ( 1992).

    Google Scholar 

  53. Paldi, A., Gyapay, G. & Jami, J. Imprinted chromosomal regions of the human genome display sex-specific meiotic recombination frequencies. Curr. Biol. 5, 1030–1035 (1995).

    CAS  PubMed  Google Scholar 

  54. Miniou, P. et al. Abnormal methylation pattern in constitutive and facultative (X inactive chromosome) heterochromatin of ICF patients. Hum. Mol. Genet. 3, 2093–2102 ( 1994).

    CAS  PubMed  Google Scholar 

  55. Ji, W. et al. DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat. Res. 379, 33– 41 (1997).

    CAS  PubMed  Google Scholar 

  56. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187– 191 (1998).

    CAS  PubMed  Google Scholar 

  57. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 invloves a histone deacetylase complex. Nature 393, 386–389 (1998).References 56 and 57 were the first reports to link DNA methylation to methyl-CpG binding proteins and chromatin-remodelling factors, such as histone deacetylase.

    CAS  PubMed  Google Scholar 

  58. Tate, P. H. & Bird, A. P. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev. 3, 226–231 (1993).

    CAS  PubMed  Google Scholar 

  59. Lewis, J. D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914 (1992).

    CAS  PubMed  Google Scholar 

  60. Wakefield, R. I. D. et al. The solution structure of the domain from MeCP2 that binds to methylated DNA. J. Mol. Biol. 291, 1055 –1065 (1999).

    CAS  PubMed  Google Scholar 

  61. Nan, X., Campoy, F. J. & Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88, 471 –481 (1997).This paper was the first to report that Rett syndrome was associated with mutations in the MeCP2 gene.

    CAS  PubMed  Google Scholar 

  62. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2 , encoding methyl-CpG-binding protein. Nature Genet. 23, 185–188 (1999).

    CAS  PubMed  Google Scholar 

  63. Kaludov, N. & Wolffe, A. P. MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res. 28, 1921–1928 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nan, X., Tate, P., Li, E. & Bird, A. DNA methylation specifies chromosomal localization of MeCP2. Mol. Cell. Biol. 10, 414–421 (1996).

    Google Scholar 

  65. Chandler, S. P., Guschin, D., Landsberger, N. & Wolffe, A. P. The methyl CpG binding transcriptional repressor MeCP2 stably associates with nucleosomal DNA. Biochemistry 38, 7008– 7018 (1999).

    CAS  PubMed  Google Scholar 

  66. Buschhausen, G., Wittig, B., Graessmann, M. & Graessmann, A. Chromatin structure is required to block transcription from the methylated herpes simplex virus thymidine kinase gene. Proc. Natl Acad. Sci. USA 84, 1177–1181 ( 1986).

    Google Scholar 

  67. Kass, S. U., Landsberger, N. & Wolffe, A. P. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol. 7, 157–165 (1997).

    CAS  PubMed  Google Scholar 

  68. Wade, P. A. et al. The Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genet. 23, 62–66 (1999).

    CAS  PubMed  Google Scholar 

  69. Ng, H.-H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet. 23, 58 –61 (1999).

    CAS  PubMed  Google Scholar 

  70. Tse, C., Sera, T., Wolffe, A. P. & Hansen, J. C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18, 4629–4638 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ng, H.-H., Jeppesen, P. & Bird, A. Active repression of methylated genes by the chromosomal protein MBD1. Mol. Cell. Biol. 20, 1394– 1406 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Fujita, N. et al. Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol. Cell. Biol. 19, 6415–6426 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fuks, F., Bergers, W. A., Brehm, A., Hughes-Davies, L. & Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genet. 24 , 88–91 (2000).

    CAS  PubMed  Google Scholar 

  74. Gibbons, R. J. et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the patterns of DNA methylation. Nature Genet. 24, 368–371 ( 2000).

    CAS  PubMed  Google Scholar 

  75. Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet. 22, 94– 97 (1999).

    CAS  PubMed  Google Scholar 

  76. Goto, K. et al. Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation 56, 39–44 ( 1993).

    Google Scholar 

  77. Endres, M. et al. DNA methyltransferase contributes to delayed ischemic brain injury. J. Neurosci. 20, 3175– 3181 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Smeets, D. F. C. M. et al. ICF syndrome: a new case and review of the literature. Hum. Genet. 94, 240–246 (1994).

    CAS  PubMed  Google Scholar 

  79. Franceschini, P. et al. Variability of clinical and immunological phenotype in immunodeficiency-centromeric instability-facial anamolies syndrome. Eur. J. Pediatr. 154, 840–846 (1995).

    CAS  PubMed  Google Scholar 

  80. Tagarro, I., Fernandez-Peralta, A. M. & Gonzales-Aguilera, J. J. Chromosomal localization of human satellites 2 and 3 by FISH method using oligonucleotides as probes. Hum. Genet. 93, 383–388 ( 1994).

    CAS  PubMed  Google Scholar 

  81. Jeanpierre, M. et al. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet. 2 , 731–735 (1993).

    CAS  PubMed  Google Scholar 

  82. Kondo, T. et al. Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum. Mol. Genet. 9, 597–604 ( 2000).

    CAS  PubMed  Google Scholar 

  83. Xu, G.-L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402 , 187–191 (1999).

    CAS  PubMed  Google Scholar 

  84. Hansen, R. S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl Acad. Sci. USA 96, 14412–14417 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Xie, S. et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 236, 87– 95 (1999).References 83–85 were the first to report that ICF syndrome is associated with mutations in the DNMT3B gene.

    CAS  PubMed  Google Scholar 

  86. Wijmenga, C. et al. Localization of the ICF syndrome to chromosome 20 by heterozygosity mapping. Am. J. Hum. Genet. 63, 803– 809 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hagberg, B., Aicardi, J., Dias, K. & Ramos, O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Ann. Neurol. 14, 471–479 (1983).

    CAS  PubMed  Google Scholar 

  88. Wan, M. et al. Rett syndrome and beyond: recurrent spontaneous familial MECP2 mutations at CpG hotspots. Am. J. Hum. Genet. 65, 1520–1529 (2000).

    Google Scholar 

  89. Ballestar, E., Yusufzai, T. M. & Wolffe, A. P. The effects of Rett syndrome mutations of the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry 39, 7100 –7106 (2000).

    CAS  PubMed  Google Scholar 

  90. Tate, P., Skarnes, W. & Bird, A. The methyl-CpG binding protein MeCP2 is essential for embryonic development in the mouse. Nature Genet. 12 , 205–208 (1996).

    CAS  PubMed  Google Scholar 

  91. Willard, H. F. & Hendrich, B. D. Breaking the silence in Rett syndrome. Nature Genet. 23, 127–128 (1999).

    CAS  PubMed  Google Scholar 

  92. Bird, A. & Tweedie, S. Transcriptional noise and the evolution of gene number. Phil. Trans. R. Soc. Lond. 349, 249–253 (1995).

    CAS  Google Scholar 

  93. Warren, S. T. & Nelson, D. L. Trinucleotide repeat expansions in neurological disease. Curr. Opin. Neurobiol. 3, 752–759 (1993).

    CAS  PubMed  Google Scholar 

  94. Kremer, E. J. et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252, 1711 –1714 (1991).

    CAS  PubMed  Google Scholar 

  95. Oberle, I. et al. Instability of a 550-base pair segment and abnormal methylation in Fragile X Syndrome. Science 252, 1097 –1102 (1991).References 94 and 95 were among the first to show that lack of expression of the FMR1 gene was associated with abnormal expansion and methylation of a trinucleotide repeat.

    CAS  PubMed  Google Scholar 

  96. Coffee, B., Zhang, F., Warren, S. T. & Reines, D. Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells . Nature Genet. 22, 98– 101 (1999).

    CAS  PubMed  Google Scholar 

  97. Fu, Y. H. et al. Variation of the CGG repeat at the Fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    CAS  PubMed  Google Scholar 

  98. Smith, S. S., Laayoun, A., Lingeman, R. G., Baker, D. J. & Riley, J. Hypermethylation of telomere-like foldbacks at codon 12 of the human c-Ha ras gene and the trinucleotide repeat of the FMR-1 gene of fragile X. J. Mol. Biol. 243, 143–151 (1994).

    CAS  PubMed  Google Scholar 

  99. Feng, Y. et al. FMRP associates with polyribosomes as an mRNP, and the 1304N mutation of severe fragile X syndrome abolishes this association. Mol. Cell 1, 109–118 ( 1997).

    CAS  PubMed  Google Scholar 

  100. Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 10, 6538–6547 ( 1998).

    Google Scholar 

  101. Hornstra, I. K., Nelson, D. L., Warren, S. T. & Yang, T. P. High resolution methylation analysis of the FMR1 gene trinucleotide repeat region in fragile X syndrome. Hum. Mol. Genet. 2, 1659–1665 (1993).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan P. Wolffe.

Supplementary information

Related links

Related links

DATABASE LINKS

ICF syndrome

Rett syndrome

Fragile X syndrome

TP53

DNMT1

DNMT3A

DNMT3B

DNMT1-like protein in Drosophila

DNMT2 homologue in Drosophila

Dnmt3a

Dnmt3b

E2F1

HDAC1

HDAC2

DMAP1

TSG101

MECP2

MBD1

MBD2

MBD3

RbAp46/48

MECP1

MBD2/3 in Drosophila

ATRX gene

ATRX syndrome

FMR1 gene

FURTHER INFORMATION

Histone sequence database

DNA methylation society

Glossary

HETEROCHROMATIN

The densely staining regions of the nucleus that generally contain condensed, transcriptionally inactive regions of the genome.

EUCHROMATIN

The lightly staining regions of the nucleus that generally contain decondensed, transcriptionally active regions of the genome.

BLASTOCYST

An early stage of embryonic development at which cells begin to commit to certain developmental lineages.

IMPRINTING

A genetic mechanism by which genes are selectively expressed from the maternal or paternal chromosomes.

CPG ISLAND

A genomic region of about one kilobase that contains close to the theoretical, expected frequency of the CpG dinucleotide.

NUCLEOSOME

The basic structural subunit of chromatin, which consists of roughly 200 base pairs of DNA and an octamer of histone proteins.

DEAMINATION

(of cytosine) The reaction of a water molecule with the amino-group on position 4 of the pyrimidine ring of cytosine, which results in the conversion of cytosine to uracil.

RETROTRANSPOSON

A mobile genetic element; its DNA is transcribed into RNA, which is reverse-transcribed into DNA and then is inserted into a new location in the genome.

L1 OR LINE ELEMENT

Long interspersed sequences generated by RNA polymerase II transcripts.

ALU OR SINE ELEMENT

Short interspersed sequences generated by RNA polymerase III transcripts. An Alu is one of several different SINEs and it requires factors encoded by other retrotransposons (reverse transcriptase) to proliferate.

INTRACISTERNAL A PARTICLE (IAP)

A mouse L1-like element.

V(D)J RECOMBINATION

A specialized form of recombination that assembles the genes that encode lymphocyte antigen receptors from variable (V), diversity (D) and joining (J) gene segments. DNA double-strand breaks are introduced between the V, D and J segments and DNA repair proteins then join the segments together.

5-AZA-2′-DEOXYCYTIDINE (5-AZA-CDR)

A potent and specific inhibitor of DNA methylation.

HETEROLOGOUS GAL4 DNA-BINDING DOMAIN

A protein that is fused to the DNA-binding domain of the yeast GAL4 protein to determine its effect on transcription.

TFIIB

Transcription factor IIB, a critical component of the basal transcription machinery.

TRICHOSTATIN A (TSA)

A specific inhibitor of histone deacetylase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, K., Wolffe, A. DNA methylation in health and disease. Nat Rev Genet 1, 11–19 (2000). https://doi.org/10.1038/35049533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35049533

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing