Skip to main content
Log in

Causal Inference in the Health Sciences: A Conceptual Introduction

  • Published:
Health Services and Outcomes Research Methodology Aims and scope Submit manuscript

Abstract

This paper provides a conceptual introduction to causal inference, aimed to assist health services researchers benefit from recent advances in this area. The paper stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underlie all causal inferences, the languages used in formulating those assumptions, and the conditional nature of causal claims inferred from nonexperimental studies. These emphases are illustrated through a brief survey of recent results, including the control of confounding, corrections for noncompliance, and a symbiosis between counterfactual and graphical methods of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • J. D. Angrist, G. W. Imbens and D. B. Rubin, “Identification of causal effects using instrumental variables (with comments),” Journal of the American Statistical Association, 91(434), pp. 444-472, 1996.

    Google Scholar 

  • A. Balke and J. Pearl, “Counterfactuals and policy analysis in structural models,” in Uncertainty in Artificial Intelligence 11 (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, San Francisco, pp. 11-18, 1995.

    Google Scholar 

  • A. Balke and J. Pearl, “Bounds on treatment effects from studies with imperfect compliance,” Journal of the American Statistical Association, 92(439), pp. 1172-1176, 1997.

    Google Scholar 

  • H. Becher, “The concept of residual confounding in regression models and some applications,” Statistics in Medicine, 11, pp. 1747-1758, 1992.

    Google Scholar 

  • Y. M. M. Bishop, “Effects of collapsing multidimensional contingency tables,” Biometrics, 27, pp. 545-562, 1971.

    Google Scholar 

  • K. A. Bollen. Structural Equations with Latent Variables, John Wiley, New York, 1989.

    Google Scholar 

  • B. Bonet, “Instrumentality tests revisited,” in Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, pp. 48-55, 2001.

    Google Scholar 

  • R. J. Bowden and D. A. Turkington. Instrumental Variables, Cambridge University Press, Cambridge, England, 1984.

    Google Scholar 

  • N. E. Breslow and N. E. Day. Statistical Methods in Cancer Research; Vol. 1, The Analysis of Case-Control Studies, IARC, Lyon, 1980.

    Google Scholar 

  • N. Cartwright. Nature's Capacities and Their Measurement, Clarendon Press, Oxford, 1989.

    Google Scholar 

  • D. M. Chickering and J. Pearl, “A clinician's tool for analyzing non-compliance,” Computing Science and Statistics, 29(2), pp. 424-431, 1997.

    Google Scholar 

  • R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J. Spielgelhalter. Probabilistic Networks and Expert Systems, Springer Verlag, New York, NY, 1999.

    Google Scholar 

  • D. R. Cox. The Planning of Experiments, John Wiley and Sons, NY, 1958.

    Google Scholar 

  • A. P. Dawid, “Conditional independence in statistical theory,” Journal of the Royal Statistical Society, Series B, 41(1), pp. 1-31, 1979.

    Google Scholar 

  • O. D. Duncan. Introduction to Structural Equation Models, Academic Press, New York, 1975.

    Google Scholar 

  • E. Eells. Probabilistic Causality, Cambridge University Press, Cambridge, MA, 1991.

    Google Scholar 

  • D. Freedman, “As others see us: A case study in path analysis (with discussion),” Journal of Educational Statistics, 12(2), pp. 101-223, 1987.

    Google Scholar 

  • D. Galles and J. Pearl, “Testing identifiability of causal effects,” in Uncertainty in Artificial Intelligence 11 (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, San Francisco, pp. 185-195, 1995.

    Google Scholar 

  • A. S. Goldberger, “Structural equation models in the social sciences,” Econometrica: Journal of the Econometric Society, 40, pp. 979-1001, 1972.

    Google Scholar 

  • D. A. Grayson, “Confounding confounding,” American Journal of Epidemiology, 126, pp. 546-553, 1987.

    Google Scholar 

  • S. Greenland and J. M. Robins, “Identifiability, exchangeability, and epidemiological confounding,” International Journal of Epidemiology, 15(3), pp. 413-419, 1986.

    Google Scholar 

  • S. Greenland, J. Pearl and J. M Robins, “Causal diagrams for epidemiologic research,” Epidemiology, 10(1), pp. 37-48, 1999a.

    Google Scholar 

  • S. Greenland, J. M. Robins and J. Pearl, “Confounding and collapsibility in causal inference,” Statistical Science, 14(1), pp. 29-46, 1999b.

    Google Scholar 

  • S. Greenland, “Relation of the probability of causation to the relative risk and the doubling dose: A methodologic error that has become a social problem. American Journal of Public Health, 89, pp. 1166-1169, 1999.

    Google Scholar 

  • W. W. Hauck, J. M. Heuhaus, J. D. Kalbfleisch and S. Anderson, “A consequence of omitted covariates when estimating odds ratios,” Journal Clinical Epidemiology, 44(1), pp. 77-81, 1991.

    Google Scholar 

  • J. J. Heckman and J. Smith, “Evaluating the welfare state,” in Econometric and Economic Theory in the 20th Century (S. Strom, ed.), Cambridge University Press, Cambridge, England, pp. 1-60, 1998.

    Google Scholar 

  • P. W. Holland and D. B. Rubin, “Causal inference in retrospective studies,” Evaluation Review, 13, pp. 203-231, 1988.

    Google Scholar 

  • P. W. Holland, “Causal inference, path analysis, and recursive structural equations models,” in Sociological Methodology (C. Clogg, ed.), American Sociological Association, Washington, D.C., pp. 449-484, 1988.

    Google Scholar 

  • G. W. Imbens and J. D. Angrist, “Identification and estimation of local average treatment effects,” Econometrica, 62(2), pp. 467-475, 1994.

    Google Scholar 

  • K. G. Joreskog and D. Sorbom. LISREL IV: Analysis of Linear Structural Relationships by Maximum Likelihood, International Educational Services, Chicago, 1978.

    Google Scholar 

  • J. S. Kaufman and S. Kaufman, “Assessment of structured socioeconomic effects on health,” Epidemiology, 12(2), pp. 157-167, 2001.

    Google Scholar 

  • H. Kiiveri, T. P. Speed and J. B. Carlin, “Recursive causal models,” Journal of Australian Math Society, 36, pp. 30-52, 1984.

    Google Scholar 

  • D. G. Kleinbaum, L. L. Kupper, K. E. Muller and A. Nizam. Applied Regression Analysis and Other Multivariable Methods, Duxbury Press, Pacific Grove, third edition, 1998.

    Google Scholar 

  • T. C. Koopmans, “Identification problems in econometric model construction,” in Studies in Econometric Method (W. C. Hood and T. C. Koopmans, eds.), Wiley, New York, pp. 27-48, 1953.

    Google Scholar 

  • M. Kuroki and M. Miyakawa, “Identifiability criteria for causal effects of joint interventions,” Journal of the Japan Statistical Society, 29(2), pp. 105-117, 1999.

    Google Scholar 

  • S. L. Lauritzen. Graphical Models, Clarendon Press, Oxford, 1996.

    Google Scholar 

  • S. L. Lauritzen, “Causal inference from graphical models,” Technical Report R-99-2021, Department of Mathematical Sciences, Aalborg University, Denmark, 1999.

    Google Scholar 

  • D. V. Lindley and M. R. Novick, “The role of exchangeability in inference,” The Annals of Statistics, 9(1), pp. 45-58, 1981.

    Google Scholar 

  • C. F. Manski, “Nonparametric bounds on treatment effects,” American Economic Review, Papers and Proceedings, 80, pp. 319-323, 1990.

    Google Scholar 

  • C. F. Manski. Identification Problems in the Social Sciences, Harvard University Press, Cambridge, MA, 1995.

    Google Scholar 

  • O. S. Miettinen and E. F. Cook, “Confounding essence and detection,” American Journal of Epidemiology, 114, pp. 593-603, 1981.

    Google Scholar 

  • B. Muthen, “Response to Freedman's critique of path analysis: Improve credibility by better methodological training,” Journal of Educational Statistics, 12(2), pp. 178-184, 1987.

    Google Scholar 

  • J. Neyman, “On the application of probability theory to agricultural experiments,” Essay on principles. Section 9. Statistical Science, 5(4), pp. 465-480, 1923.

    Google Scholar 

  • J. Pearl and J. M. Robins, “Probabilistic evaluation of sequential plans from causal models with hidden variables,” in Uncertainty in Artificial Intelligence 11 (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, San Francisco, pp. 444-453, 1995.

    Google Scholar 

  • J. Pearl and T. Verma, “A theory of inferred causation,” in Principles of Knowledge Representation and Reasoning: Proceedings of the Second International Conference (J. A. Allen, R. Fikes and E. Sandewall, eds.), Morgan Kaufmann, San Mateo, CA, pp. 441-452, 1991.

    Google Scholar 

  • J. Pearl. Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San Mateo, CA, 1988.

    Google Scholar 

  • J. Pearl, “Comment: Graphical models, causality, and intervention,” Statistical Science, 8, pp. 266-269, 1993.

    Google Scholar 

  • J. Pearl, “Causal diagrams for empirical research,” Biometrika, 82(4), pp. 669-710, 1995a.

    Google Scholar 

  • J. Pearl, “On the testability of causal models with latent and instrumental variables,” in Uncertainty in Artificial Intelligence 11 (P. Besnard and S. Hanks, eds.), Morgan Kaufmann, pp. 435-443, 1995b.

  • J. Pearl. Causality: Models, Reasoning, and Inference, Cambridge University Press, New York, 2000.

    Google Scholar 

  • J. M. Robins, “The analysis of randomized and non-randomized aids treatments trials using a new approach to casual inference in longitudinal studies,” in Health Service Research Methodology: A Focus on AIDS (L. Sechrest, H. Freeman, and A. Mulley, eds.), U.S. Public Health Service, Washington D.C., pp. 113-159, 1989a.

    Google Scholar 

  • J. M. Robins and S. Greenland, “The probability of causation under a stochastic model for individual risk,” Biometrics, 45, pp. 1125-1138, 1989b.

    Google Scholar 

  • J. M. Robins and S. Greenland, “Identifiability and exchangeability for direct and indirect effects,” Epidemiology, 3(2), pp. 143-155, 1992.

    Google Scholar 

  • J. M. Robins, “Anewapproach to causal inference in mortality studies with a sustained exposure period-applications to control of the healthy workers survivor effect,” Mathematical Modeling, 7, pp. 1393-1512, 1986.

    Google Scholar 

  • J. M. Robins, “A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods,” Journal of Chronic Diseases, 40(Suppl 2), pp. 139S-161S, 1987.

    Google Scholar 

  • J. M. Robins, “Data, design, and background knowledge in etiologic inference,” Epidemiology, 12(3), pp. 313-320, 2001.

    Google Scholar 

  • P. Rosenbaum and D. Rubin, “The central role of propensity score in observational studies for causal effects,” Biometrica, 70, pp. 41-55, 1983.

    Google Scholar 

  • D. B. Rubin, “Estimating causal effects of treatments in randomized and nonrandomized studies,” Journal of Educational Psychology, 66, pp. 688-701, 1974.

    Google Scholar 

  • H. A. Simon and N. Rescher, “Cause and counterfactual,” Philosophy and Science, 33, pp. 323-340, 1966.

    Google Scholar 

  • H. A. Simon, “Causal ordering and identifiability,” in Studies in Econometric Method (Wm. C. Hood and T. C. Koopmans, eds.), Wiley and Sons Inc., pp. 49-74, 1953.

  • M. E. Sobel, “Causal inference in statistical models of the process of socioeconomic achievement,” Sociological Methods & Research, 27(2), pp. 318-348, 1998.

    Google Scholar 

  • P. Spirtes, C. Glymour and R. Scheines. Causation, Prediction, and Search, Springer-Verlag, New York, 1993.

    Google Scholar 

  • P. Suppes. A Probabilistic Theory of Causality, North-Holland Publishing Co., Amsterdam, 1970.

    Google Scholar 

  • J. Tian and J. Pearl, “Probabilities of causation: Bounds and identification,” in Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, CA, pp. 589-598, 2000.

    Google Scholar 

  • J. Tian and J. Pearl, “On the identification of causal effects,” in Proceedings of the American Association of Artificial Intelligence, AAAI Press=The MIT Press, Menlo Park, CA, 2002.

    Google Scholar 

  • J. Tian, A. Paz and J. Pearl, “Finding minimal separating sets,” Technical Report R-254, University of California, Los Angeles, CA, 1998.

    Google Scholar 

  • C. R. Weinberg, “Toward a clearer definition of confounding,” American Journal of Epidemiology, 137, pp. 1-8, 1993.

    Google Scholar 

  • N. Wermuth and D. Cox, “Linear dependencies represented by chain graphs,” Statistical Science, 8(3), pp. 204-218, 1993.

    Google Scholar 

  • N. Wermuth, “On block-recursive regression equations (with discussion),” Brazilian Journal of Probability and Statistics, 6, pp. 1-56, 1992.

    Google Scholar 

  • J. Whittaker. Graphical Models in Applied Multivariate Statistics, John Wiley, Chichester, England, 1990.

    Google Scholar 

  • A. S. Whittemore, “Collapsibility of multidimensional contingency tables,” Journal of the Royal Statistical Society, B, 40(3), pp. 328-340, 1978.

    Google Scholar 

  • S. Wright, “Correlation and causation,” Journal of Agricultural Research, 20, pp. 557-585, 1921.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearl, J. Causal Inference in the Health Sciences: A Conceptual Introduction. Health Services & Outcomes Research Methodology 2, 189–220 (2001). https://doi.org/10.1023/A:1020315127304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020315127304

Navigation