Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-16T19:34:55.346Z Has data issue: false hasContentIssue false

The implications of genotype–environment correlation for establishing causal processes in psychopathology

Published online by Cambridge University Press:  15 October 2012

Sara R. Jaffee*
Affiliation:
King's College London
Thomas S. Price
Affiliation:
King's College London
*
Address correspondence and reprint requests to: Sara Jaffee, Department of Psychology, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104; E-mail: srjaffee@psych.penn.edu.

Abstract

The significance of genotype–environment interplay is its focus on how causal factors, whether environmental or genetic, have their effects. It is difficult to establish causality in observational research because of the potential for reverse causation and confounding. Most environmental measures are heritable, which means that their effects on the risk for psychopathology are potentially confounded by genotype. In contrast, genetic influences on psychopathology may be mediated by their effect on environmental exposures. The existence of genetic influences on putative environmental risk factors offers both possibilities and pitfalls for research into environmental epidemiology. We use the example of parenting and its influence on childhood externalizing problems to review how genotype–environment correlations can be exploited to demonstrate causal processes in pyschopathology.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asbury, K., Dunn, J. F., Pike, A., & Plomin, R. (2003). Nonshared environmental influences on individual differences in early behavioral development: A monozygotic twin differences study. Child Development, 74, 933943.CrossRefGoogle ScholarPubMed
Asbury, K., Dunn, J. F., & Plomin, R. (2006). Birthweight-discordance and differences in early parenting relate to monozygotic twin differences in behaviour problems and academic achievement at age 7. Developmental Science, 9, F22F31.Google Scholar
Bakermans-Kranenburg, M., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952.Google Scholar
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers' externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.Google Scholar
Barrett, J., & Fleming, A. S. (2011). All mothers are not created equal: Neural and psychobiological perspectives on mothering and the importance of individual differences. Journal of Child Psychology and Psychiatry, 52, 368397.Google Scholar
Bell, R. Q. (1968). A reinterpretation of the direction of effects in socialization. Psychological Review, 75, 8195.Google Scholar
Bolinskey, P. K., Neale, M. C., Jacobson, K. C., Prescott, C. A., & Kendler, K. S. (2004). Sources of individual differences in stressful life event exposure in male and female twins. Twin Research, 7, 3338.Google Scholar
Burt, S. A., McGue, M., Iacono, W. G., & Krueger, R. F. (2006). Differential parent–child relationships and adolescent externalizing symptoms: Cross-lagged analyses within a monozygotic twin differences design. Developmental Psychology, 42, 12891298.CrossRefGoogle ScholarPubMed
Burt, S. A., McGue, M., Krueger, R. F., & Iacono, W. G. (2005). How are parent–child conflict and child externalizing symptoms related over time? Results from a genetically informative cross-lagged study. Development and Psychopathology, 17, 145165.CrossRefGoogle ScholarPubMed
Butcher, L. M., & Plomin, R. (2008). The nature of nurture: A genome-wide association scan for family chaos. Behavior Genetics, 38, 361371.Google Scholar
Button, T. M. M., Lau, J. Y. F., Maughan, B., & Eley, T. C. (2008). Parental punitive discipline, negative life events and gene–environment interplay in the development of externalizing behavior. Psychological Medicine, 38, 2939.CrossRefGoogle ScholarPubMed
Carbonneau, R., Eaves, L. J., Silberg, J. L., Simonoff, E., & Rutter, M. (2002). Assessment of the within-family environment in twins: Absolute versus differential ratings, and relationship with conduct problems. Journal of Child Psychology and Psychiatry, 43, 10641074.CrossRefGoogle ScholarPubMed
Caspi, A., Moffitt, T. E., Cannon, M., McClay, J., Murray, R., Harrington, H., et al. (2005). Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: Longitudinal evidence of a gene × environment interaction. Biological Psychiatry, 57, 11171127.Google Scholar
Caspi, A., Moffitt, T. E., Morgan, J., Rutter, M., Taylor, A., Arseneault, L., et al. (2004). Maternal expressed emotion predicts children's antisocial behavior problems: Using monozygotic-twin differences to identify environmental effects on behavioral development. Developmental Psychology, 40, 149161.Google Scholar
Chambless, D. L., & Hollon, S. D. (1998). Defining empirically supported therapies. Journal of Consulting and Clinical Psychology, 66, 718.Google Scholar
Davey Smith, G., & Ebrahim, S. (2003). “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32, 122.CrossRefGoogle Scholar
Davey Smith, G., Lawlor, D. A., Harbord, R., Timpson, N., Day, I., & Ebrahim, S. (2007). Clustered environments and randomized genes: A fundamental distinction between conventional and genetic epidemiology. PLOS Medicine, 4, 19851992.Google Scholar
Dawkins, R. (1982). The extended phenotype: The gene as the unit of selection. Oxford: Freeman.Google Scholar
Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, 28, 313395.Google Scholar
Devlin, B., Bacanu, S. A., & Roeder, K. (2004). Genomic control to the extreme. Nature Genetics, 36, 11291130.CrossRefGoogle ScholarPubMed
DiLalla, L. F., & Gottesman, I. I. (1991). Biological and genetic contributions to violence: Widom's untold tale. Psychological Bulletin, 109, 125129.CrossRefGoogle Scholar
D'Onofrio, B. M., & Lahey, B. B. (2010). Biosocial influences on the family: A decade review. Journal of Marriage and the Family, 72, 762782.CrossRefGoogle Scholar
D'Onofrio, B. M., Turkheimer, E., Emery, R. E., Slutske, W. S., Heath, A. C., Madden, P. A., et al. (2005). A genetically informed study of marital instability and its association with offspring psychopathology. Journal of Abnormal Psychology, 114, 570586.CrossRefGoogle ScholarPubMed
Eaves, L. J., Prom, E. C., & Silberg, J. L. (2010). The mediating effect of parental neglect on adolescent and young adult anti-sociality: A longitudinal study of twins and their parents. Behavior Genetics, 40, 425437.Google Scholar
Eisenberg, D. T. A., MacKillop, J., Modi, M., Beauchemin, J., Dang, D., Lisman, S. A., et al. (2007). Examining impulsivity as an endophenotype using a behavioral approach: A DRD2 TaqI A and DRD4 48-bp VNTR association study. Retrieved March 14, 2012 from http://behavioralandbrainfunctions.com/content/3/1/2Google Scholar
Elder, G. H. J. (1998). The life course and human development. In Lerner, R. M. (Ed.), Handbook of child psychology: Vol. 1. Theoretical models of human development (pp. 939981). New York: Wiley.Google Scholar
Flavell, J. H. (1996). Piaget's legacy. Psychological Science, 7, 200203.CrossRefGoogle Scholar
Fortuna, K., van IJzendoorn, M. H., Mankuta, D., Kaitz, M., Avinun, R., Ebstein, R. P., et al. (2011). Differential genetic susceptibility to child risk at birth in predicting observed maternal behavior. Plos One, 6, e19765.Google Scholar
Foster, E. M. (2010). Causal inference and developmental psychology. Developmental Psychology, 46, 14541480.Google Scholar
Froehlich, T. E., Anixt, J. S., Loe, I. M., Chirdkiatgumchai, V., Kuan, L., & Gilman, R. C. (2011). Update on environmental risk factors for attention-deficit/hyperactivity disorder. Current Psychiatry Reports, 13, 333344.Google Scholar
Galbally, M., Lewis, A. J., van IJzendoorn, M. H., & Permezel, M. (2011). The role of oxytocin in mother–infant relations: A systematic review of human studies. Harvard Review of Psychiatry, 19, 114.Google Scholar
Ge, X., Conger, R. D., Cadoret, R. J., Neiderhiser, J. M., Yates, W., Troughton, E., et al. (1996). The developmental interface between nature and nurture: A mutual influence model of child antisocial behavior and parent behavior. Developmental Psychology, 32, 574589.CrossRefGoogle Scholar
Gershoff, E. T. (2002). Corporal punishment by parents and associated child behaviors and experiences: A meta-analytic and theoretical review. Psychological Bulletin, 128, 539579.CrossRefGoogle ScholarPubMed
Gizer, I. R., Ficks, C., & Waldman, I. D. (2009). Candidate gene studies of ADHD: A meta-analytic review. Human Genetics, 126, 5190.CrossRefGoogle ScholarPubMed
Glymour, M. M., Veling, W., & Susser, E. (2011). Integrating knowledge of genetic and environmental pathways to complete the developmental map. In Kendler, K. S., Jaffee, S. R. & Romer, D. (Eds.), The dynamic genome and mental health: The role of genes and environments in youth development (pp. 172194). New York: Oxford University Press.Google Scholar
Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010). Oxytocin, cortisol, and triadic family interactions. Physiology & Behavior, 101, 679684.Google Scholar
Hanna, B., Sheikh, H. I., Laptook, R. S., Kim, J., Singh, S. M., Klein, D. N., et al. (2012). Child dopamine transporter genotype and parenting: Evidence for evocative gene–environment correlations. Manuscript submitted for publication.Google Scholar
Hayden, E. P., Klein, D. N., Dougherty, L. R., Olino, T. M., Laptook, R. S., Dyson, M. W., et al. (2010). The dopamine D2 receptor gene and depressive and anxious symptoms in childhood: Associations and evidence for gene–environment correlation and gene–environment interaction. Psychiatric Genetics, 20, 304310.Google Scholar
Hinshaw, S. P. (2002). Intervention research, theoretical mechanisms, and causal processes related to externalizing behavior patterns. Development and Psychopathology, 14, 789818.Google Scholar
Irons, D. E., McGue, M., Iacono, W. G., & Oetting, W. S. (2007). Mendelian randomization: A novel test of the gateway hypothesis and models of gene–environment interplay. Development and Psychopathology, 19, 11811195.Google Scholar
Jaffee, S. R., Caspi, A., Moffitt, T. E., Polo-Tomas, M., Price, T. S., & Taylor, A. (2004). The limits of child effects: Evidence for genetically mediated child effects on corporal punishment but not on physical maltreatment. Developmental Psychology, 40, 10471058.CrossRefGoogle Scholar
Jaffee, S. R., & Price, T. S. (2007). Gene–environment correlations: A review of the evidence and implications for prevention of mental illness. Molecular Psychiatry, 12, 432442.CrossRefGoogle ScholarPubMed
Jaffee, S. R., Strait, L. B., & Odgers, C. L. (2012). From correlates to causes: Can quasi-experimental studies and statistical innovations bring us closer to identifying the causes of antisocial behavior? Psychological Bulletin, 38, 272295.CrossRefGoogle Scholar
Jonsson, E. G., Nothen, M. M., Grunhage, F., Farde, L., Nakashima, Y., Propping, P., et al. (1999). Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Molecular Psychiatry, 4, 290296.CrossRefGoogle ScholarPubMed
Kaitz, M., Shalev, I., Sapir, N., Devor, N., Samet, Y., Mankuta, D., et al. (2010). Mothers' dopamine receptor polymorphism modulates the relation between infant fussiness and sensitive parenting. Developmental Psychobiology, 52, 149157.Google Scholar
Kendler, K. S. (2011). A conceptual overview of gene–environment interaction and correlation in a developmental context. In Kendler, K. S., Jaffee, S. R., & Romer, D. (Eds.), The dynamic genome and mental health: The role of genes and environments in youth development (pp. 528). New York: Oxford University Press.Google Scholar
Kendler, K. S., & Baker, J. H. (2007). Genetic influences on measures of the environment: A systematic review. Psychological Medicine, 37, 615626.Google Scholar
Kendler, K. S., & Eaves, L. J. (1986). Models for the joint effect of genotype and environment on liability to psychiatric illness. American Journal of Psychiatry, 143, 279289.Google Scholar
Kendler, K. S., & Gardner, C. O. (2010). Dependent stressful life events and prior depressive episodes in the prediction of major depression. Archives of General Psychiatry, 67, 11201127.Google Scholar
Kendler, K. S., Jacobson, K., Myers, J. M., & Eaves, L. J. (2008). A genetically informative developmental study of the relationship between conduct disorder and peer deviance in males. Psychological Medicine, 38, 10011011.Google Scholar
Klahr, A. M., McGue, M., Iacono, W. G., & Burt, S. A. (2011). The association between parent–child conflict and adolescent conduct problems over time: Results from a longitudinal adoption study. Journal of Abnormal Psychology, 120, 4656.Google Scholar
Klahr, A. M., Rueter, M. A., McGue, M., Iacono, W. G., & Burt, S. A. (2011). The relationship between parent–child conflict and adolescent antisocial behavior: Confirming shared environmental mediation. Journal of Abnormal Child Psychology, 39, 683694.Google Scholar
Lahey, B. B., Rathouz, P. J., Lee, S. S., Chronis-Tuscano, A., Pelham, W. E., Waldman, I. D., et al. (2011). Interactions between early parenting and a polymorphism of the child's dopamine transporter gene in predicting future child conduct disorder symptoms. Journal of Abnormal Psychology, 120, 3345.Google Scholar
Larsson, H., Viding, E., Rijsdijk, F. V., & Plomin, R. (2008). Relationships between parental negativity and childhood antisocial behavior over time: A bidirectional effects model in a longitudinal genetically informative design. Journal of Abnormal Child Psychology, 36, 633645.CrossRefGoogle Scholar
Lee, S. S., Chronis-Tuscano, A., Keenan, K., Pelham, W. E., Loney, J., Van Hulle, C. A., et al. (2010). Association of maternal dopamine transporter genotype with negative parenting: Evidence for gene × environment interaction with child disruptive behavior. Molecular Psychiatry, 15, 548558.Google Scholar
Lewis, S. J., & Smith, G. D. (2005). Alcohol, ALDH2, and esophageal cancer: A meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach. Cancer Epidemiology, Biomarkers and Prevention, 14, 19671971.Google Scholar
Lucock, M. (2000). Folic acid: Nutritional biochemistry, molecular biology, and role in disease processes. Molecular Genetics and Metabolism, 71, 121138.Google Scholar
Lynch, S. K., Turkheimer, E., D'Onofrio, B. M., Mendle, J., & Emery, R. E. (2006). A genetically informed study of the association between harsh punishment and offspring behavioral problems. Journal of Family Psychology, 20, 190198.CrossRefGoogle ScholarPubMed
Marino, C., Vanzin, L., Giorda, R., Frigerio, A., Lorusso, M. L., Nobile, M., et al. (2004). An assessment of transmission disequilibrium between quantitative measures of childhood problem behaviors and DRD2/Taq1 and DRD4/48bp-repeat polymorphisms. Behavior Genetics, 34, 495502.Google Scholar
Mills-Koonce, W. R., Propper, C. B., Gariepy, J. L., Blair, C., Garrett-Peters, P., & Cox, M. J. (2007). Bidirectional genetic and environmental influences on mother and child behavior: The family system as the unit of analyses. Development and Psychopathology, 19, 10731087.CrossRefGoogle Scholar
Moffitt, T. E., Caspi, A., & Rutter, M. (2005). Strategy for investigating interactions between measured genes and measured environments. Archives of General Psychiatry, 62, 473481.Google Scholar
Morral, A. R., McCaffrey, D. F., & Paddock, S. M. (2002). Reassessing the marijuana gateway effect. Addiction, 97, 14931504.Google Scholar
Naber, F., van IJzendoorn, M. H., Deschamps, P., van Engeland, H., & Bakermans-Kranenburg, M. J. (2010). Intranasal oxytocin increases fathers' observed responsiveness during play with their children: A double-blind within-subject experiment. Psychoneuroendocrinology, 35, 15831586.Google Scholar
Neiderhiser, J. M., Reiss, D., Hetherington, E. M., & Plomin, R. (1999). Relationships between parenting and adolescent adjustment over time: Genetic and environmental contributions. Developmental Psychology, 35, 680692.Google Scholar
Nigg, J. T. (2010). Attention-deficit/hyperactivity disorder: Endophenotypes, structure, and etiological pathways. Current Directions in Psychological Science, 19, 2429.Google Scholar
Noble, E. P., Blum, K., Ritchie, T., Montgomery, A., & Sheridan, P. J. (1991). Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Archives of General Psychiatry, 48, 648654.Google Scholar
Numan, M. (2006). Hypothalamic neural circuits regulating maternal responsiveness toward infants. Behavioral and Cognitive Neuroscience Reviews, 5, 163190.Google Scholar
Numan, M. (2007). Motivational systems and the neural circuitry of maternal behavior in the rat. Developmental Psychobiology, 49, 1221.Google Scholar
O'Connor, T. G., Deater-Deckard, K., Fulker, D., Rutter, M., & Plomin, R. (1998). Genotype–environment correlations in late childhood and early adolescence: Antisocial behavioral problems and coercive parenting. Developmental Psychology, 34, 970981.Google Scholar
Oppenheimer, C. W., Hankin, B. L., Jenness, J., Young, J. F., Abela, J. R. Z., & Smolen, A. (2011). Observed positive parenting behaviors and youth genotype: Evidence for rGE and moderation by parent personality traits. Manuscript submitted for publication.Google Scholar
Pike, A., McGuire, S., Reiss, D., Hetherington, E. M., & Plomin, R. (1996). Family environment and adolescent depressive symptoms and antisocial behaviour: A multivariate genetic analysis. Developmental Psychology, 32, 590603.Google Scholar
Plomin, R., & Bergeman, C. S. (1991). The nature of nurture: Genetic influence on “environmental” measures. Behavioral and Brain Sciences, 14, 373427.Google Scholar
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype–environment interaction and correlation in the analysis of human behavior. Psychological Bulletin, 84, 309322.Google Scholar
Pohjalainen, T., Rinne, J. O., Nagren, K., Lehikoinen, P., Anttila, K., Syvalahti, E. K. G., et al. (1998). The A1 allele of the human D-2 dopamine receptor gene predicts low D-2 receptor availability in healthy volunteers. Molecular Psychiatry, 3, 256260.CrossRefGoogle Scholar
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38, 904909.Google Scholar
Propper, C., Willoughby, M., Halpern, C., Carbone, M., & Cox, M. (2007). Parenting quality, DRD4, and the prediction of externalizing and internalizing behaviors in early childhood. Developmental Psychobiology, 49, 619632.Google Scholar
Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., Sullivan, P. F., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460, 748752.Google ScholarPubMed
Reid, J. B., Patterson, G. R., & Snyder, J. (2002). Antisocial behavior in children and adolescents: A developmental analysis and model for intervention. Washington, DC: American Psychological Association.Google Scholar
Rice, F., Harold, G. T., Boivin, J., Hay, D. F., Van den Bree, M., & Thapar, A. (2009). Disentangling prenatal and inherited influences in humans with an experimental design. Proceedings of the National Academy of Sciences, 106, 24642467.Google Scholar
Riem, M. M., Pieper, S., Out, D., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Oxytocin receptor gene and depressive symptoms associated with physiological reactivity to infant crying. Social Cognitive and Affective Neuroscience, 6, 294300.Google Scholar
Riggins-Casper, K. M., Cadoret, R. J., Knutson, J. F., & Langbehn, D. (2003). Biology–environment interaction and evocative biology–environment correlation: Contributions of harsh discipline and parental psychopathology to problem adolescent behaviors. Behavior Genetics, 33, 205220.Google Scholar
Rothbaum, F., & Weisz, J. R. (1994). Parental caregiving and child externalizing behavior in nonclinical samples: A meta-analysis. Psychological Bulletin, 116, 5574.Google Scholar
Ruderfer, D., Kirov, G., Chambert, K., Moran, J., Owen, M., O'Donovan, M., et al. (2011). A family-based study of common polygenic variation and risk of schizophrenia. Molecular Psychiatry, 16, 887888.Google Scholar
Rutter, M. (2007). Proceeding from observed correlation to causal inference: The use of natural experiments. Perspectives on Psychological Science, 2, 377395.Google Scholar
Rutter, M., & Pickles, A. (1991). Person–environment interactions: Concepts, mechanisms, and implications for data analysis. In Wachs, T. D. & Plomin, R. (Eds.), Conceptualization and measurement of organism–environment interaction (pp. 105141). Washington DC: American Psychological Association.Google Scholar
Rutter, M., Pickles, A., Murray, R., & Eaves, L. (2001). Testing hypotheses on specific environmental causal effects on behavior. Psychological Bulletin, 127, 291324.CrossRefGoogle ScholarPubMed
Rutter, M., & Plomin, R. (2009). Pathways from science findings to health benefits. Psychological Medicine, 39, 529542.CrossRefGoogle ScholarPubMed
Saltzman, W., & Maestripieri, D. (2011). The neuroendocrinology of primate maternal behavior. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 11921204.Google Scholar
Sampson, R. J., Laub, J. H., & Wimer, C. (2006). Does marriage reduce crime? A counterfactual approach to within-individual causal effects. Criminology, 44, 465510.CrossRefGoogle Scholar
Schatzkin, A., Abnet, C. C., Cross, A. J., Gunter, M., Pfeiffer, R., Gail, M., et al. (2009). Mendelian randomization: How it can and cannot help confirm causal relations between nutrition and cancer. Cancer Prevention Research, 2, 104113.CrossRefGoogle ScholarPubMed
Schmidt, L. A., Fox, N. A., Rubin, K. H., Hu, S., & Hamer, D. H. (2002). Molecular genetics of shyness and aggression in preschoolers. Personality and Individual Differences, 33, 227238.Google Scholar
Shifman, S., Bhomra, A., Smiley, S., Wray, N. R., James, M. R., Martin, N. G., et al. (2008). A whole genome association study of neuroticism using DNA pooling. Molecular Psychiatry, 13, 302312.Google Scholar
Spielewoy, C., Roubert, C., Hamon, M., Nosten-Bertrand, M., Betancur, C., & Giros, B. (2000). Behavioural disturbances associated with hyperdopaminergia in dopamine-transporter knockout mice. Behavioural Pharmacology, 11, 279290.Google Scholar
Sun, J., Jia, P., Fanous, A. H., van den Oord, E., Chen, X., Riley, B. P., et al. (2010). Schizophrenia gene networks and pathways and their applications for novel candidate gene selection. Plos One, 5, e11351.CrossRefGoogle ScholarPubMed
Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., et al. (2010). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15, 647656.Google Scholar
Thompson, J., Thomas, N., Singleton, A., Piggott, M., Lloyd, S., Perry, E. K., et al. (1997). D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: Reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics, 7, 479484.Google Scholar
Uher, R., & McGuffin, P. (2010). The moderation by the serotonin transporter gene of environmental adversity in the etiology of depression: 2009 update. Molecular Psychiatry, 15, 1822.Google Scholar
van den Oord, E. J. C. G., Kuo, P. H., Hartmann, A. M., Webb, B. T., Moller, H. J., Hettema, J. M., et al. (2008). Genome-wide association analysis followed by a replication study implicates a novel candidate gene for neuroticism. Archives of General Psychiatry, 65, 10621071.Google Scholar
van IJzendoorn, M. H., Bakermans-Kranenburg, M., & Mesman, J. (2008). Dopamine system genes associated with parenting in the context of daily hassles. Genes Brain and Behavior, 7, 403410.Google Scholar
Verweij, K. J. H., Zietsch, B. P., Medland, S. E., Gordon, S. D., Benyamin, B., Nyholt, D. R., et al. (2010). A genome-wide association study of Cloninger's temperament scales: Implications for the evolutionary genetics of personality. Biological Psychology, 85, 306317.Google Scholar
Wade, T. D., & Kendler, K. S. (2000). The genetic epidemiology of parental discipline. Psychological Medicine, 30, 13031313.CrossRefGoogle ScholarPubMed
Yanovitzky, I. (2006). Sensation seeking and alcohol use by college students: Examining multiple pathways of effects. Journal of Health Communication, 11, 269280.Google Scholar