Skip to main content

Advertisement

Log in

Interplay of VEGFa and MMP2 regulates invasion of glioblastoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Neovascularization plays a substantial role in the regulation of invasion of glioblastoma. However, the underlying molecular basis remains largely unknown. Both vascular endothelial growth factor a (VEGFa) and matrix metalloproteinases 2 (MMP2) are essential for cancer neovascularization and cancer invasion in that they promote endothelial mitogenesis and permeability, and promote extracellular matrix degradation, respectively. In the current study, we found strong positive correlation of VEGFa and phosphorylated MMP2 levels in the glioblastoma from the patients. Thus, we used a human glioblastoma line, A-172, to examine the interaction of VEGFa and MMP2. We found that overexpression of VEGFa in A-172 cells increased MMP2 levels, while inhibition of VEGFa in A-172 cells decreased MMP2 levels. On the other hand, forced changes in MMP2 levels in A-172 cells did not affect VEGFa levels. These data suggest that VEGFa may regulate MMP2 in glioblastoma, while MMP2 did not appear to affect VEGFa levels. We then examined the signaling pathways involved in the regulation of MMP2 levels by VEGFa. Application of a specific extracellular-related kinase 1/2 (ERK1/2) inhibitor, but not application of either an protein kinase B (Akt) inhibitor, or a Jun N-terminal kinase (JNK) inhibitor to VEGFa-overexpressing A-172 cells substantially abolished the effect of VEGFa on MMP2 activation, suggesting that VEGFa may increase MMP2 levels via ERK/mitogen-activated protein kinase (MAPK), but not phosphatidylinositol 3-kinase (PI3K) or JNK signaling pathways in glioblastoma. Moreover, adapted VEGFa levels were found to directly and positively affect the glioblastoma development in an intracranial glioblastoma implantation model. Taken together, our data suggest that anti-VEGFa treatment in glioblastoma may inhibit neovascularization not only by VEGFa itself but also by its regulatory effect on MMP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schonberg DL, Bao S, Rich JN. Genomics informs glioblastoma biology. Nat Genet. 2013;45:1105–7.

    Article  CAS  Google Scholar 

  2. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A. 2011;108:3749–54.

    Article  CAS  Google Scholar 

  3. Reardon DA, Turner S, Peters KB, Desjardins A, Gururangan S, Sampson JH, et al. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J Natl Compr Canc Netw. 2011;9:414–27.

    Article  CAS  Google Scholar 

  4. Robles Irizarry L, Hambardzumyan D, Nakano I, Gladson CL, Ahluwalia MS. Therapeutic targeting of VEGF in the treatment of glioblastoma. Expert Opin Ther Targets. 2012;16:973–84.

    Article  CAS  Google Scholar 

  5. Oka N, Soeda A, Inagaki A, Onodera M, Maruyama H, Hara A, et al. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochem Biophys Res Commun. 2007;360:553–9.

    Article  CAS  Google Scholar 

  6. Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.

    Article  CAS  Google Scholar 

  7. Bagri A, Kouros-Mehr H, Leong KG, Plowman GD. Use of anti-VEGF adjuvant therapy in cancer: challenges and rationale. Trends Mol Med. 2010;16:122–32.

    Article  CAS  Google Scholar 

  8. Ferrara N. Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol. 2009;29:789–91.

    Article  CAS  Google Scholar 

  9. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307.

    Article  CAS  Google Scholar 

  10. Davidson B, Reich R, Risberg B, Nesland JM. The biological role and regulation of matrix metalloproteinases (MMP) in cancer. Arkh Patol. 2002;64:47–53.

    CAS  PubMed  Google Scholar 

  11. Rhee JS, Coussens LM. Recking MMP function: implications for cancer development. Trends Cell Biol. 2002;12:209–11.

    Article  CAS  Google Scholar 

  12. Lu KV, Jong KA, Rajasekaran AK, Cloughesy TF, Mischel PS. Upregulation of tissue inhibitor of metalloproteinases (TIMP)-2 promotes matrix metalloproteinase (MMP)-2 activation and cell invasion in a human glioblastoma cell line. Lab Invest. 2004;84:8–20.

    Article  CAS  Google Scholar 

  13. Li Z, Du L, Li C, Wu W. Human chorionic gonadotropin beta induces cell motility via ERK1/2 and MMP-2 activation in human glioblastoma U87MG cells. J Neurooncol. 2013;111:237–44.

    Article  CAS  Google Scholar 

  14. Enloe BM, Jay DG. Inhibition of Necl-5 (CD155/PVR) reduces glioblastoma dispersal and decreases MMP-2 expression and activity. J Neurooncol. 2011;102:225–35.

    Article  CAS  Google Scholar 

  15. Chintala SK, Ali-Osman F, Mohanam S, Rayford A, Go Y, Gokaslan ZL, et al. Effect of cisplatin and BCNU on MMP-2 levels in human glioblastoma cell lines in vitro. Clin Exp Metastasis. 1997;15:361–7.

    Article  CAS  Google Scholar 

  16. Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.

    Article  CAS  Google Scholar 

  17. Wang YQ, Guo X, Qiu MH, Feng XY, Sun FY. VEGF overexpression enhances striatal neurogenesis in brain of adult rat after a transient middle cerebral artery occlusion. J Neurosci Res. 2007;85:73–82.

    Article  CAS  Google Scholar 

  18. Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.

    Article  CAS  Google Scholar 

  19. Huang JL, Wu SY, Xie XJ, Wang MX, Zhu S, Gu JR. Inhibiting effects of leflunomide metabolite on overexpression of CD147, MMP-2 and MMP-9 in PMA differentiated THP-1 cells. Eur J Pharmacol. 2011;670:304–10.

    Article  CAS  Google Scholar 

  20. Biggs 3rd WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A. 1999;96:7421–6.

    Article  CAS  Google Scholar 

  21. Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T, et al. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside Rh2. Tumour Biol. 2014;35:5593–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Jinan Youth Technology Star Plan (20120137), Shandong Excellent Youth Scientist Research Fund (BS2012YY022), and Shandong University Innovation Fund (2012TS135).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Zhang or Jiangang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Zhu, S., Zhang, Y. et al. Interplay of VEGFa and MMP2 regulates invasion of glioblastoma. Tumor Biol. 35, 11879–11885 (2014). https://doi.org/10.1007/s13277-014-2438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2438-3

Keywords

Navigation