Skip to main content
Log in

Obesity and Brain Positron Emission Tomography

  • Review
  • Published:
Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Obesity, an increasingly common problem in modern societies, results from energy intake chronically exceeding energy expenditure. This imbalance of energy can be triggered by the internal state of the caloric equation (homeostasis) and non-homeostatic factors, such as social, cultural, psychological, environmental factors or food itself. Nowadays, positron emission tomography (PET) radiopharmaceuticals have been examined to understand the cerebral control of food intake in humans. Using 15O–H2 PET, changes in regional cerebral blood flow (rCBF) coupled to neuronal activity were reported in states of fasting, satiation after feeding, and sensory stimulation. In addition, rCBF in obese subjects showed a greater increase in insula, the primary gustatory cortex. 18F–fluorodeoxyglucose PET showed higher metabolic activity in postcentral gyrus of the parietal cortex and lower in prefrontal cortex and anterior cingulate cortex in obese subjects. In addition, dopamine receptor (DR) PET demonstrated lower DR availability in obese subjects, which might lead to overeating to compensate. Brain PET has been utilized to reveal the connectivity between obesity and brain. This could improve understanding of obesity and help develop a new treatment for obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. OECD. Obesity and the economics of prevention: fit not fat. In: OECD. 2012. https://www.oecd.org/els/health-systems/49712651.pdf. Accessed 14 Oct 2016.

  2. National Cancer Center. Obesity Statistics in Korea. In: National cancer center. 2016. http://www.cancer.go.kr/mbs/cancer/subview.jsp?id=cancer_010106060000. Accessed 14 October 2016.

  3. Na SY, Myung SJ. Obesity and colorectal cancer. Korean J Gastroenterol. 2012;59:16–26.

    Article  PubMed  Google Scholar 

  4. Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M. Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1199–209. e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mijovic T, How J, Payne RJ. Obesity and thyroid cancer. Front Biosci (Schol Ed). 2011;3:555–64.

    Google Scholar 

  6. Alzahrani B, Iseli TJ, Hebbard LW. Non-viral causes of liver cancer: does obesity led inflammation play a role? Cancer Lett. 2014;345:223–9.

    Article  CAS  PubMed  Google Scholar 

  7. Gu W, Chen C, Zhao KN. Obesity-associated endometrial and cervical cancers. Front Biosci (Elite Ed). 2013;5:109–18.

    Article  Google Scholar 

  8. Bruehl H, Wolf OT, Sweat V, Tirsi A, Richardson S, Convit A. Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res. 2009;1280:186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gunstad J, Paul RH, Cohen RA, Tate DF, Spitznagel MB, Gordon E. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry. 2007;48:57–61.

    Article  PubMed  Google Scholar 

  10. Haslam DW, James WP. Obesity. Lancet. 2005;366:1197–209.

    Article  PubMed  Google Scholar 

  11. Bellisle F, Drewnowski A, Anderson GH, Westerterp-Plantenga M, Martin CK. Sweetness, satiation, and satiety. J Nutr. 2012;142:1149S–54S.

    Article  CAS  PubMed  Google Scholar 

  12. Volkow ND, Wang GJ, Tomasi D, Baler RD. The addictive dimensionality of obesity. Biol Psychiatry. 2013;73:811–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berridge KC. Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev. 1996;20:1–25.

    Article  CAS  PubMed  Google Scholar 

  14. Pecina S, Smith KS, Berridge KC. Hedonic hot spots in the brain. Neuroscientist. 2006;12:500–11.

    Article  PubMed  Google Scholar 

  15. Naukkarinen J, Surakka I, Pietilainen KH, Rissanen A, Salomaa V, Ripatti S, et al. Use of genome-wide expression data to mine the “gray zone” of GWA studies leads to novel candidate obesity genes. PLoS Genet. 2010;6:e1000976.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41:18–24.

    Article  CAS  PubMed  Google Scholar 

  17. Schlogl H, Horstmann A, Villringer A, Stumvoll M. Functional neuroimaging in obesity and the potential for development of novel treatments. Lancet Diabetes Endocrinol. 2016;4:695–705.

    Article  PubMed  Google Scholar 

  18. Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015;8:1–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drewnowski A. Taste preferences and food intake. Annu Rev Nutr. 1997;17:237–53.

    Article  CAS  PubMed  Google Scholar 

  20. Kenny PJ. Common cellular and molecular mechanisms in obesity and drug addiction. Nat Rev Neurosci. 2011;12:638–51.

    Article  CAS  PubMed  Google Scholar 

  21. De Araujo IE, Rolls ET. Representation in the human brain of food texture and oral fat. J Neurosci. 2004;24:3086–93.

    Article  CAS  PubMed  Google Scholar 

  22. Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002;3:655–66.

    Article  CAS  PubMed  Google Scholar 

  23. Yeomans MR. Palatability and the micro-structure of feeding in humans: the appetizer effect. Appetite. 1996;27:119–33.

    Article  CAS  PubMed  Google Scholar 

  24. Cooper SJ. Beta-carbolines characterized as benzodiazepine receptor agonists and inverse agonists produce bi-directional changes in palatable food consumption. Brain Res Bull. 1986;17:627–37.

    Article  CAS  PubMed  Google Scholar 

  25. Levin BE, Routh VH. Role of the brain in energy balance and obesity. Am J Phys. 1996;271:R491–500.

    CAS  Google Scholar 

  26. Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci. 2014;15:367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wise RA. Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361:1149–58.

    Article  CAS  Google Scholar 

  28. Norgren R, Hajnal A, Mungarndee SS. Gustatory reward and the nucleus accumbens. Physiol Behav. 2006;89:531–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schultz W. Subjective neuronal coding of reward: temporal value discounting and risk. Eur J Neurosci. 2010;31:2124–35.

    Article  PubMed  Google Scholar 

  30. Stice E, Spoor S, Bohon C, Small DM. Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science. 2008;322:449–52.

    Article  CAS  PubMed  Google Scholar 

  31. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15:37–46.

    Article  CAS  PubMed  Google Scholar 

  32. Tomasi D, Volkow ND. Striatocortical pathway dysfunction in addiction and obesity: differences and similarities. Crit Rev Biochem Mol Biol. 2013;48:1–19.

    Article  CAS  PubMed  Google Scholar 

  33. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA. 2011;108:15037–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Volkow ND, Fowler JS, Wang GJ. The addicted human brain: insights from imaging studies. J Clin Invest. 2003;111:1444–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res. 2010;1350:18–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA. Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens. Addict Biol. 2007;12:6–16.

    Article  CAS  PubMed  Google Scholar 

  38. Figlewicz DP, Bennett JL, Aliakbari S, Zavosh A, Sipols AJ. Insulin acts at different CNS sites to decrease acute sucrose intake and sucrose self-administration in rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:R388–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.

    Article  CAS  PubMed  Google Scholar 

  40. Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev. 2012;13:43–56.

    Article  CAS  PubMed  Google Scholar 

  41. Bennett CM, Miller MB. How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci. 2010;1191:133–55.

    Article  PubMed  Google Scholar 

  42. Michaelides M, Thanos PK, Volkow ND, Wang GJ. Translational neuroimaging in drug addiction and obesity. ILAR J. 2012;53:59–68.

    Article  CAS  PubMed  Google Scholar 

  43. Raichle ME. Circulatory and metabolic correlates of brain function in normal humans. In Comprehensive physiology. Wiley Online Library. 2011. doi:10.1002/cphy.cp010516

  44. Tataranni PA, Gautier JF, Chen K, Uecker A, Bandy D, Salbe AD, et al. Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proc Natl Acad Sci USA. 1999;96:4569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gautier JF, Chen K, Salbe AD, Bandy D, Pratley RE, Heiman M, et al. Differential brain responses to satiation in obese and lean men. Diabetes. 2000;49:838–46.

    Article  CAS  PubMed  Google Scholar 

  46. DelParigi A, Chen K, Salbe AD, Reiman EM, Tataranni PA. Sensory experience of food and obesity: a positron emission tomography study of the brain regions affected by tasting a liquid meal after a prolonged fast. NeuroImage. 2005;24:436–43.

    Article  PubMed  Google Scholar 

  47. Kringelbach ML, Rolls ET. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol. 2004;72:341–72.

    Article  PubMed  Google Scholar 

  48. Le DS, Pannacciulli N, Chen K, Del Parigi A, Salbe AD, Reiman EM, et al. Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. Am J Clin Nutr. 2006;84:725–31.

    CAS  PubMed  Google Scholar 

  49. DelParigi A, Chen K, Salbe AD, Hill JO, Wing RR, Reiman EM, et al. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int J Obes. 2007;31:440–8.

    Article  CAS  Google Scholar 

  50. Del Parigi A, Chen K, Gautier JF, Salbe AD, Pratley RE, Ravussin E, et al. Sex differences in the human brain’s response to hunger and satiation. Am J Clin Nutr. 2002;75:1017–22.

    CAS  PubMed  Google Scholar 

  51. Stephan E, Pardo JV, Faris PL, Hartman BK, Kim SW, Ivanov EH, et al. Functional neuroimaging of gastric distention. J Gastrointest Surg. 2003;7:740–9.

    Article  PubMed  Google Scholar 

  52. Greenberg JH, Reivich M, Alavi A, Hand P, Rosenquist A, Rintelmann W, et al. Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique. Science. 1981;212:678–80.

    Article  CAS  PubMed  Google Scholar 

  53. Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M, et al. Exposure to appetitive food stimuli markedly activates the human brain. NeuroImage. 2004;21:1790–7.

    Article  PubMed  Google Scholar 

  54. Wang GJ, Volkow ND, Felder C, Fowler JS, Levy AV, Pappas NR, et al. Enhanced resting activity of the oral somatosensory cortex in obese subjects. Neuroreport. 2002;13:1151–5.

    Article  PubMed  Google Scholar 

  55. Volkow ND, Wang GJ, Telang F, Fowler JS, Goldstein RZ, Alia-Klein N, et al. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring). 2009;17:60–5.

    Article  Google Scholar 

  56. Wang GJ, Volkow ND, Telang F, Jayne M, Ma Y, Pradhan K, et al. Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation. Proc Natl Acad Sci USA. 2009;106:1249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, et al. Brain dopamine and obesity. Lancet. 2001;357:354–7.

  58. Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. NeuroImage. 2003;19:1709–15.

    Article  PubMed  Google Scholar 

  59. Volkow ND, Fowler JS. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex. 2000;10:318–25.

    Article  CAS  PubMed  Google Scholar 

  60. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. NeuroImage. 2008;42:1537–43.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Volkow ND, Wang GJ, Fowler JS, Logan J, Jayne M, Franceschi D, et al. “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse. 2002;44:175–80.

    Article  CAS  PubMed  Google Scholar 

  62. Guo J, Simmons WK, Herscovitch P, Martin A, Hall KD. Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior. Mol Psychiatry. 2014;19:1078–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dunn JP, Kessler RM, Feurer ID, Volkow ND, Patterson BW, Ansari MS, et al. Relationship of dopamine type 2 receptor binding potential with fasting neuroendocrine hormones and insulin sensitivity in human obesity. Diabetes Care. 2012;35:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eisenstein SA, Antenor-Dorsey JA, Gredysa DM, Koller JM, Bihun EC, Ranck SA, et al. A comparison of D2 receptor specific binding in obese and normal-weight individuals using PET with (N-[(11)C]methyl)benperidol. Synapse. 2013;67:748–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Steele KE, Prokopowicz GP, Schweitzer MA, Magunsuon TH, Lidor AO, Kuwabawa H, et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20:369–74.

    Article  PubMed  Google Scholar 

  66. Dunn JP, Cowan RL, Volkow ND, Feurer ID, Li R, Williams DB, et al. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Karlsson HK, Tuulari JJ, Tuominen L, Hirvonen J, Honka H, Parkkola R, et al. Weight loss after bariatric surgery normalizes brain opioid receptors in morbid obesity. Mol Psychiatry. 2016;21:1057–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Pusan National University Research Grant for 2 years.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kyoungjune Pak or Seong-Jang Kim.

Ethics declarations

Conflict of Interest

Kyoungjune Pak, Seong-Jang Kim, and In Joo Kim declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pak, K., Kim, SJ. & Kim, I.J. Obesity and Brain Positron Emission Tomography. Nucl Med Mol Imaging 52, 16–23 (2018). https://doi.org/10.1007/s13139-017-0483-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13139-017-0483-8

Keywords

Navigation