Skip to main content

Advertisement

Log in

Transmission Dynamics of Zika Fever: A SEIR Based Model

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, a deterministic model is proposed to perform a thorough investigation of the transmission dynamics of Zika fever. Our model, in particular, takes into account the effects of horizontal as well as vertical disease transmission of both humans and vectors. The expression for basic reproductive number \(R_0\) is determined in terms of horizontal and vertical disease transmission rates. An in-depth stability analysis of the model is performed, and it is shown, that model is locally asymptotically stable when \(R_0 < 1\). In this case, there is a possibility of backward bifurcation in the model. With the assumption that total population is constant, we prove that the disease free state is globally asymptotically stable when \(R_0 < 1\). It is also shown that disease strongly uniformly persists when \(R_0> 1\) and there exists an endemic equilibrium which is unique if the total population is constant. The endemic state is locally asymptotically stable when \(R_0> 1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agusto, F.B., Bewick, S., Fagan, W.F.: Mathematical model for Zika virus dynamics with sexual transmission route. Ecol. Complex. 29, 1–92 (2017)

    Article  Google Scholar 

  2. Boorman, J.P., Porterfield, J.S.: A simple technique for infection of mosquitoes with viruses; transmission of Zika virus. Trans. R. Soc. Trop. Med. Hyg. 50(3), 238–242 (1956)

    Article  Google Scholar 

  3. Besnard, M., Lastre, S., Teissier, A., Cao-Lormeau, V.M., Musso, D.: Evidence of perinatal transmission of Zika virus. Eurosurveillance 19(13), 1–4 (2014)

    Article  Google Scholar 

  4. Compartmental Models in Epidemiology. Mathematical Epidemiology, Lecture Notes in Mathematics, vol. 1945. Springer, Berlin (2008)

  5. Castillo-Chavez, C., Song, B.: Dynamical model of tuberclosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castillo-Chavez, C., Thieme, H.R.: Asymptotically autonomous epidemic models. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (eds.) Mathematical Population Dynamics: Analysis of Heterogeneity, 1: Theory of Epidemics, pp. 33–50. Winnipeg, Wuerz (1993)

    Google Scholar 

  7. Centers for disease control and prevention (CDC). Symptoms, diagnosis, and treatment. http://www.cdc.gov/zika/symptoms/

  8. Calisher, C.H., Gould, E.A.: Taxonomy of the virus family Flaviviridae. Adv. Virus Res. 59, 1–19 (2003)

    Article  Google Scholar 

  9. Gao, D., Lou, Y., He, D., Porco, T.C., Kuang, Y., Shigui, R., Gerardo, C.: Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis. Nat. Sci. Rep. 6, 28070 (2016). doi:10.1038/srep28070

    Article  Google Scholar 

  10. Derouich, M., Boutayeb, A.: Dengue fever: mathematical modelling and computer simulation. Appl. Math. Comput. 177(2), 528–544 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Donnelly, C.A., Ghani, A.C., Leung, G.M., Hedley, A.J., Fraser, C., Riley, S., Anderson, R.M.: Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 361(9371), 1832 (2003)

    Article  Google Scholar 

  12. Esteva, L., Vargas, C.: Analysis of a dengue disease transmission model. Math. Biosci. 150(2), 131–151 (1998)

    Article  MATH  Google Scholar 

  13. Esteva, L., Vargas, C.: A model for Dengue disease with variable human population. J. Math. Biol. 38(3), 220–240 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Esteva, L., Vargas, C.: Influence of vertical and mechanical transmission on the dynamics of dengue disease. Math. Biosci. 167(1), 51–64 (2000)

    Article  MATH  Google Scholar 

  15. Esteva, L., Vargas, C.: Coexistence of different serotypes of dengue virus. J. Math. Biol. 46(1), 31–47 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. European Centre for Disease prevention and Control (ECDC).: Microcephaly in Brazil potentially linked to the Zika virus epidemic. http://ecdc.europa.eu/en/publications/Publications/zika-virus-americas-association-with-microcephaly-rapid-risk-assessment.pdf

  17. Kelser, E.A.: Meet dengue’s cousin, Zika. Microbes Infect. 18, 163–166 (2016). doi:10.1016/j.micinf.2015.12.003

    Article  Google Scholar 

  18. Ferguson, N., Anderson, R., Gupta, S.: The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc. Natl. Acad. Sci. 96(2), 790–794 (1999)

    Article  Google Scholar 

  19. Garba, S.M., Gumel, A.B., Abu Bakar, M.R.: Backward bifurcations in dengue transmission dynamics. Math. Biosci. 215(1), 11–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garba, S.M., Gumel, A.B., Abu Bakar, M.R.: Effect of cross-immunity on the transmission dynamics of two strains of dengue. Int. J. Comput. Math. 87(10), 2361–2384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gumel, A.B., Ruan, S., Day, T., Watmough, J., Brauer, F., van den Driessche, P., Sahai, B.M.: Modelling strategies for controlling SARS outbreaks. Proc. R. Soc. Ser. B 271, 2223–2232 (2003)

    Article  Google Scholar 

  22. Hayes, E.B.: Zika Virus Outside Africa. Emerg. Infect. Dis. 15(9), 1347–1350 (2009)

    Article  Google Scholar 

  23. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Imran, M., Hassan, M., Khan, A.: A comparison of a deterministic and stochastic model for hepatitis C with an isolation stage. J. Biol. Dyn. 7, 276–304 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hethcote, H.W., Thieme, H.R.: Stability of the endemic equilibrium in epidemic models with subpopulations. Math. Biosci. 75, 205–227 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hethcote, H.W., van Ark, J.W.: Epidemiology models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs. Math. Biosci. 84, 85–118 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kautner, I., Robinson, M.J., Kuhnle, U.: Dengue virus infection: epidemiology, pathogenesis, clinical presentation, diagnosis, and prevention. J. Pediatr. 131(4), 516–524 (1997)

    Article  Google Scholar 

  28. Kindhauser, M., Allen, T., Frank, V., Santhana, R., Dye, C.: Zika: the origin and spread of a mosquito-borne virus. WHO, Geneva (2016)

    Google Scholar 

  29. Khan, A., Hassan, M., Imran, M.: Estimating the basic reproduction number for single-strain dengue fever epidemics. Infect. Dis. Poverty 3, 12 (2014)

    Article  Google Scholar 

  30. Kucharski, A.J., Funk, S., Eggo, R.M., Mallet, H., Edmunds, W., Nilles, E.: Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013–14 French Polynesia outbreak. PLoS Negl. Trop. Dis. 10, e0004726 (2016)

    Article  Google Scholar 

  31. Lanciotti, R.S., Kosoy, O.L., Laven, J.J.: Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia 2007. Emerg. Infect. Dis. 14(8), 1232–1239 (2008)

    Article  Google Scholar 

  32. Li, M.Y., Smith, H.L., Wang, L.: Global dynamics of an SEIR epidemic model with vertical transmission. SIAM J. Appl. Math. 62(1), 58–69 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., James, L., Murray, M.: Transmission dynamics and control of severe acute respiratory syndrome. Science 300, 1966–1970 (2003)

    Article  Google Scholar 

  34. Lloyd-Smith, J.O., Galvani, A.P., Getz, W.M.: Curtailing transmission of severe acute respiratory syndrome within a community and its hospital. Proc. R. Soc. Lond. Ser. B Biol. Sci. 170, 1979–1989 (2003)

    Article  Google Scholar 

  35. Attar, N.: ZIKA virus circulates in new regions. Nat. Rev. Microbiol. 14, 62 (2016)

    Article  Google Scholar 

  36. PAHO issues Zika virus alert, Centre for Infectious Disease Control Policy (2015). http://www.cidrap.umn.edu/news-perspective/2015/12/paho-issues-zika-virus-alert

  37. Pan American Health Organization: Neurological syndrome, congenital malformations and Zika virus infection. Implications for public health in the America (2015). http://reliefweb.int/report/world/epidemiological-alert-neurological-syndrome-congenital-malformations-and-zika-virus

  38. Salceanu, P.L.: Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov Exponents. Math. Biosci. Eng. 8(3), 807–825 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Semenza, J.C., Zeller, H.: Integrated surveillance for prevention and control of emerging vector-borne diseases in Europe. Eur. Surveill. 19, 3 (2014)

    Article  Google Scholar 

  40. Smith, H.L., Thieme, H.: Dynamical systems and population persistence, Graduate Studies in Mathematics, vol. 118. American Mathematical Society, Providence (2011)

    Google Scholar 

  41. Summers, D.J., Acosta, R.W.: Zika virus in an American recreational traveler. J. Travel Med. 22(5), 338–340 (2015)

    Article  Google Scholar 

  42. Thangamani, S., Huang, J., Hart, C., Guzman, H., Tesh, R.: Vertical transmission of zika virus in Aedes aegypti mosquitoes. Am. J. Trop. Med. Hyg. 95, 1169–1173 (2016)

    Article  Google Scholar 

  43. Thieme, H.R.: Convergence results and a Poincare Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30, 755–763 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Thieme, H.R.: Asymptotically autonomous differential equations in the plane. Rocky Mt. J. Math. 24, 351–380 (1994)

    MathSciNet  MATH  Google Scholar 

  45. van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ventura, C.V., et al.: Zika virus in Brazil and macular atrophy in a child with microcephaly. Lancet 387(10015), 228 (2016)

    Article  Google Scholar 

  47. Vivas-Barber, A., Castillo-Chavez, C., Barany, E.: Dynamics of an SAIQR influenza model. Biomath 3, 1–3 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Wearing, H.J., Rohani, P.: Ecological and immunological determinants of Dengue epidemics. Proc. Natl. Acad. Sci. 103(31), 11802–11807 (2006)

    Article  Google Scholar 

  49. WHO sees Zika outbreak spreading through the Americas. Reuters. http://www.straitstimes.com/world/americas/who-sees-zikaoutbreak-spreading-through-the-americas. Accessed 25 Jan 2016 (2016)

Download references

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudassar Imran.

Appendices

Appendix 1: Backward Bifurcation in Model (1)

The model given in the paper has the variables: \(S_h, E_h, I_h, R_h, S_v, E_v, I_v\).

Now we redefine these equations by assigning them the following values:

Let \(S_h = x_1, E_h= x_2, I_h= x_3, R_h= x_4, S_v= x_5, E_v= x_6, I_v= x_7\). Also let \(\hat{f} = [f_1,\ldots ,f_7]\) denote the vector field of the original model in terms of \(x_i's\).

Then we have the following model in terms of \(x_i's \)

$$\begin{aligned} \dfrac{dx_1}{dt}&=f_1= \Pi _h - pB_h x_2-q B_h x_3 - \frac{C_{hv} x_7 x_1}{(x_1 + x_2 + x_3 + x_4)} - \mu _h x_1\\ \dfrac{dx_2}{dt}&=f_2= \frac{C_{hv} x_7 x_1}{(x_1 + x_2 + x_3 + x_4)}+ pB_h x_2 + q B_h x_3 - (\xi + \mu _h) x_2\\ \dfrac{dx_3}{dt}&=f_3= \xi x_2 - (\theta + \delta _{I} + \mu _h) x_3 \\ \dfrac{dx_4}{dt}&=f_4= \theta x_3 - \mu _h x_4 \\ \dfrac{dx_5}{dt}&=f_5= \Pi _v - r B_v x_6 - r B_v x_7 - \frac{C_{hv} x_3 x_5}{(x_1 + x_2 + x_3 + x_4 )} - \mu _v x_5\\ \dfrac{dx_6}{dt}&=f_6= r B_v x_6 + s B_v x_7 + \frac{C_{hv} x_3 x_5}{(x_1 + x_2 + x_3 + x_4 )} - (\sigma +\mu _v) x_6\\ \dfrac{dx_7}{dt}&=f_7= \sigma x_6 - (\mu _v + \delta _v)x_7\\ \end{aligned}$$

Now the disease free equilibrium (DFE) of the system is given by \({\varepsilon _0}\) as follows:

$$\begin{aligned} \varepsilon _0 = \{x_1^*,0,0,0, x_5^*, 0,0\} \end{aligned}$$

Consider the case when \(R_0=1\). Take \(C_{hv}=C_{hv}^*\) as a bifurcation parameter.

$$\begin{aligned} C_{hv}^*= \sqrt{\dfrac{\Pi _h \mu _v m_1 m_2}{ \xi \sigma \mu _h \Pi _v}}. \end{aligned}$$

The Jacobian of the matrix at the DFE is given by

$$\begin{aligned} J(\varepsilon _0) =\left( \begin{array}{lllllll} -\mu _h &{}\quad -pB_h &{}\quad -qB_h &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -C_{hv}^* \\ 0 &{}\quad -(\xi + \mu _h)+ p B_h &{}\quad q B_h &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad C_{hv}^* \\ 0 &{}\quad \xi &{}\quad -j_1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \theta &{}\quad -\mu _h &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad -j_2 &{}\quad 0 &{}\quad -\mu _v &{}\quad -r B_v &{}\quad -sB_v\\ 0 &{}\quad 0 &{}\quad j_2 &{}\quad 0 &{}\quad 0 &{}\quad -j_3+rB_v &{}\quad sB_v\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \sigma &{}\quad -j_4\\ \end{array} \right) \end{aligned}$$

where:

$$\begin{aligned} j_1&=\theta +\delta _I+\mu _h; \qquad j_2=\frac{C_{hv}^* \Pi _v \mu _h}{\Pi _h \mu _v}\\ j_3&=\sigma + \mu _v; \qquad \quad j_4=\mu _v + \delta _v \end{aligned}$$

The above Jacobian matrix of the linearized system has a simple zero eigenvalue (with all other eigenvalues having negative real part). Hence, the Centre Manifold Theory can be used to analyze the dynamics of the system (1). We will use the theorem given by Castillo-Chavez and Song [5].

The Right Eigenvector

The right eigenvector of the Jacobian matrix correspond to zero eigenvalue at \(C_{hv}^*\) is given by: w \(={w_1,\ldots ,w_7}\), where

$$\begin{aligned} w_1= & {} \left[ \frac{-p B_h j_1 j_3 j_4}{\xi \sigma \mu _h j_2}-\frac{q B_h j_3 j_4 }{\sigma j_2 \mu _h} - \frac{C_{hv}^*}{\mu _h} \right] w_7 , \; w_2=\frac{j_1 j_3 j_4}{\xi \sigma j_2}w_7, \; w_3=\frac{j_3 j_4}{\sigma j_2}w_7\\ w_4= & {} \frac{\theta j_3 j_4}{\mu _h \sigma j_2}w_7 , \; w_5=[-\frac{j_2 j_3 j_4}{\sigma j_2 \mu _v}-\frac{s B_v j_3j_4}{\theta j_2 \mu _h} + \frac{C_{hv}^*}{\mu _h} w_7, \; w_6=\frac{j_4}{\sigma }w_7,\; w_7>0. \end{aligned}$$

The Left Eigenvector

Similarly, the left eigenvector of the Jacobian matrix correspond to zero eigenvalue at \(C_{hv}^*\) is given by: v \(={v_1,\ldots ,v_7}\), where

$$\begin{aligned} v_1=0, \; v_2=\frac{j_4}{C_{hv}^*}v_7, \; v_3=\frac{q B_h j_4}{j_1 C_{hv}^*}v_7, \; v_4=v_5=0,\; v_6=\frac{j_3}{\sigma }v_7,\;v_7>0. \end{aligned}$$

The Non-zero Derivatives

The value of

$$\begin{aligned} a=\sum _{k,i,j=1}^{7} v_k w_i w_j\frac{\partial ^2 f_k}{\partial x_i x_j}. \end{aligned}$$

So, that

$$\begin{aligned} a= & {} 2w_7^2 v_7 \left( \frac{C_{hv}^* p B_v j_1 j_3^3j_4^2 }{\xi \mu _v \sigma ^3 j_2^2} + \frac{q C_{hv}^* B_v j_3^3 j_4^2}{\mu _v \sigma ^3 j_2^2} + \frac{C_{hv}^{*2}\Pi _v}{\mu _v \Pi _h}\right) -2 w_7^2 v_7 \left( \frac{j_3 j_4^2 (\mu _h j_1+\mu _h \xi +\xi \theta )}{\Pi _h \xi \sigma j_2} \right) \\&-\,2w_7^2 v_7 \left( \frac{C_{hv}^* j_3^3 j_4^2 \Pi _v (j_1 \mu _h+\xi \theta )}{\Pi _h \xi \sigma ^3 j_2^2} \right) -4 w_7^2 v_7 \left( \frac{C_{hv}^* \Pi _v \mu _h^2 j_3^3 j_4^2}{\Pi _h^2 \sigma ^3 j_2^2} \right) -2 \left( \frac{C_{hv}^* j-3^3 j_4^2 \mu _h}{\Pi _h \mu _v \sigma ^3 j_2} \right) \\&+\,\frac{w_7^2v_7q\Pi _hj_4^2\mu _hj_3}{j_1\Pi _h\sigma j_2}\left[ -\frac{s B_v j_3j_4}{\theta j_2\mu _h}+\frac{C_{hv}^*}{\mu _h}\right] . \end{aligned}$$

The value of

$$\begin{aligned} b=\sum _{k,i,j=1}^{7} v_k w_i \frac{\partial ^2 f_k}{\partial x_i C_{hv}^*} \end{aligned}$$

is given by:

$$\begin{aligned} b=\frac{j_4}{C_{hv}^*}v_7 w_7 + \frac{\Pi _v \mu _h j_3^2 j_4}{\mu _v \Pi _h \sigma ^2 j_2} v_7 w_7 \end{aligned}$$

Since b is always positive, backward bifurcation occurs whenever \(a>0\).

Appendix 2: Stability of Endemic Steady State

Proof

The proof of Theorem 8 is based on using a Krasnoselskii sub-linearity trick [25, 26].

Rewrite (14) as:

$$\begin{aligned} \dfrac{dE_h}{dt}= & {} \frac{C I_v}{N_h} (N_h - E_h - I_h- R_h) + p B_h E_h + q B_h I_h - (\xi +\mu _h)E_h\nonumber \\ \dfrac{dI_h}{dt}= & {} \xi E_h - (\theta + \mu _h)I_h \nonumber \\ \dfrac{dR_h}{dt}= & {} \theta I_h - \mu _h R_h\\ \dfrac{dE_v}{dt}= & {} \frac{C I_h}{N_h} (N_v - E_v - I_v) + r B_v E_v + s B_v I_v - (\sigma + \mu _v)E_v\nonumber \\ \dfrac{dI_v}{dt}= & {} \sigma E_v - \mu _v I_v.\nonumber \end{aligned}$$
(21)

Linearizing the system (21) around the endemic equilibrium \(\displaystyle N_1=(S_h^{\varnothing }, E_h^{\varnothing }, I_h^{\varnothing }, R_h^{\varnothing }, S_v^{\varnothing }, E_v^{\varnothing }, I_v^{\varnothing }) \), gives:

$$\begin{aligned} \dfrac{dE_h}{dt}= & {} \left( -\frac{C I_v^{\varnothing }}{N_h} -K_1 + p B_h\right) E_h + \left( -\frac{C I_v^{\varnothing }}{N_h} + q B_h\right) I_h - \frac{C I_v^{\varnothing }}{N_h} R_h + \frac{C S_h^{\varnothing }}{N_h}I_v\nonumber \\ \dfrac{dI_h}{dt}= & {} \xi E_h - (\theta + \mu _h)I_h \nonumber \\ \dfrac{dR_h}{dt}= & {} \theta I_h - \mu _h R_h \\ \dfrac{dE_v}{dt}= & {} \frac{C}{N_h} S_v^{\varnothing }I_h + \left( -\frac{C I_h^{\varnothing }}{N_h}-K_3 + r B_v\right) E_v - \left( -\frac{C I_h^{\varnothing }}{N_h} + s B_v\right) I_v \nonumber \\ \dfrac{dI_v}{dt}= & {} \sigma E_v - \mu _v I_v.\nonumber \end{aligned}$$
(22)

It follows that the Jacobian of the system evaluated at \(N_1\) is:

$$\begin{aligned} J(\varepsilon _0) =\left( \begin{array}{lllll} -j_2+pB_h-K_1 &{}\quad -j_2+qB_h &{}\quad -j_2 &{}\quad 0 &{}\quad j_3 \\ \xi &{}\quad -K_2 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \theta &{}\quad -\mu _h &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad j_4 &{}\quad 0 &{}\quad -j_1+rB_v-K_3 &{}\quad -j_1+sB_v\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \sigma &{}\quad -K_4\\ \end{array} \right) \end{aligned}$$

where \(\displaystyle j_1=\frac{C I_h^{\varnothing }}{N_h}\), \(\displaystyle j_2=\frac{C I_v^{\varnothing }}{N_h}\), \(\displaystyle j_3=\frac{C S_h^{\varnothing }}{N_h}\) and \(\displaystyle j_4=\frac{C S_v^{\varnothing }}{N_h}.\)

Assume that the model (22) has solution of the form

$$\begin{aligned} Z(t) = Ze^{\omega t}; \end{aligned}$$

where \(Z=(Z_1, Z_2, Z_3, Z_4, Z_5)\). Substituting Z into (22) gives:

$$\begin{aligned} \omega Z_1= & {} (-j_2+pB_h-K_1)Z_1 + (-j_2 + qB_h)Z_2 -j_2 Z_3 + j_3 Z_5\nonumber \\ \omega Z_2= & {} \xi Z_1 - (\theta _{_I} + \mu _h)Z_2 \nonumber \\ \omega Z_3= & {} \theta _{_I} Z_2 - \mu _h Z_3 \\ \omega Z_4= & {} j_4 Z_2 + (-j_1 + rB_v- K_3)Z_4 + (-j_1 + s B_v)Z_5 \nonumber \\ \omega Z_5= & {} \sigma Z_4 - K_4 Z_5.\nonumber \end{aligned}$$
(23)

We rearranged the above system of equations as follows. First we move the negative terms in the last four equations of (23) to the respective left-hand sides. Secondly, the last four equations are then re-written in terms of \(Z_1\). We have

$$\begin{aligned} \omega Z_1= & {} (-j_2+pB_h-K_1)Z_1 + (-j_2 + qB_h)Z_2 -j_2 Z_3 + j_3 Z_5\nonumber \\ Z_2= & {} \frac{\xi Z_1}{(\omega + \theta _{_I} + \mu _{_h})} \nonumber \\ Z_3= & {} \frac{\theta _{_I}(\omega +\theta _{_h}+\mu _{_h}) \xi Z_1 + \theta _{_h}\tau \xi Z_1}{(\omega +\mu _{_h})(\omega + \theta _{_I}+\tau + \mu _{_h})(\omega +\theta _{_h}+\mu _{_h})}\\ Z_4= & {} \frac{(\omega + K_4)j_4 \xi Z_1}{(\omega + K_2)[(\omega + K_4)((\omega + j_1-r\Pi _v+K_3)+(j_1- s B_{_v}))]}\nonumber \\ Z_5= & {} \frac{\sigma (\omega + K_4)j_4 \xi Z_1}{(\omega +K_4)(\omega + K_2)[(\omega + K_4)((\omega + j_1-rB_v+K_3)+(j_1- s B_v))]}.\nonumber \end{aligned}$$
(24)

Substituting the last five equations in the first equation of (23) leads to:

$$\begin{aligned} (1 + F_1(\omega ))Z_1 = (MZ)_1;\nonumber \\ (1 + F_2(\omega ))Z_2 = (MZ)_2;\nonumber \\ (1 + F_3(\omega ))Z_3 = (MZ)_3;\\ (1 + F_4(\omega ))Z_4 = (MZ)_4;\nonumber \\ (1 + F_5(\omega ))Z_5 = (MZ)_5;\nonumber \end{aligned}$$
(25)

where \(\displaystyle F_i(\omega )\) for \(i=1,\ldots ,5\) are positive functions of parameters and

$$\begin{aligned} M =\left( \begin{array}{lllll} 0 &{}\quad \frac{qB_h}{K_1-pB_h} &{}\quad 0 &{}\quad 0 &{}\quad \frac{C S_h ^{\varnothing }}{N_h(K_1 - pB_h)} \\ \frac{\xi }{K_2} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \frac{\theta }{\mu _h}&{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \frac{C S_v ^{\varnothing }}{N_h(K_3 - rB_v)} &{}\quad 0 &{}\quad 0 &{}\quad \frac{s B_v}{K_3-rB_v}\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{\sigma }{K_4} &{}\quad 0\\ \end{array} \right) \end{aligned}$$

such that the matrix M has non-negative entries. Define \(F(\omega )=min_i|1 + F_i|\). It is easy to verify that the equilibrium point \(N_1\) satisfies, \(N_1=MN_1.\) The notation \((MZ)_i\) denotes the ith coordinate of the vector MZ. If Z is a solution of (25), then it is possible to find a minimal positive real number r such that \(||Z||\le r N_1\) [25, 26]. We want to show that \(Re (\omega ) < 0\). Assume, \(Re (\omega ) \ge 0\), and consider the following two cases.

Case 1 \(\omega = 0.\) In this case (23) is a homogeneous linear system. It is easy to show that the determinant of this system is negative, and it follows that the system (23) has a unique solution, given by \(Z = 0\), which correspond to disease free steady state of the model (14).

Case 2 \(\displaystyle \omega \ne 0.\) By our assumption in this case \(|1+F_i(\omega )|> 1.\) Since r is a minimal positive real number, it follows that

$$\begin{aligned} ||Z||>\frac{r}{F(w)}N_1. \end{aligned}$$

Where \(F(\omega )\) is minimal of \(|1+F_i(\omega )|.\) From the second equation of (25), we have

$$\begin{aligned} F(w)||Z_2|| \le r I_h^{\varnothing } \end{aligned}$$

which contradicts \(||Z||>\frac{r}{F(w)}N_1.\) Hence, \(Re (\omega ) < 0\). Thus, all eigenvalues of the characteristic equation associated with the linearized system (14) will have negative real parts. This implies local asymptotical stability of endemic state. \(\square \)

Appendix 3: Model Parameters

The estimated parameters are presented in Table 3.

Table 3 Mean values of the model parameters with their assigned distributions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Usman, M., Dur-e-Ahmad, M. et al. Transmission Dynamics of Zika Fever: A SEIR Based Model. Differ Equ Dyn Syst 29, 463–486 (2021). https://doi.org/10.1007/s12591-017-0374-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0374-6

Keywords

Mathematics Subject Classification

Navigation