Skip to main content
Log in

Oscillations, Timing, Plasticity, and Learning in the Cerebellum

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The highly stereotyped, crystal-like architecture of the cerebellum has long served as a basis for hypotheses with regard to the function(s) that it subserves. Historically, most clinical observations and experimental work have focused on the involvement of the cerebellum in motor control, with particular emphasis on coordination and learning. Two main models have been suggested to account for cerebellar functioning. According to Llinás’s theory, the cerebellum acts as a control machine that uses the rhythmic activity of the inferior olive to synchronize Purkinje cell populations for fine-tuning of coordination. In contrast, the Ito–Marr–Albus theory views the cerebellum as a motor learning machine that heuristically refines synaptic weights of the Purkinje cell based on error signals coming from the inferior olive. Here, we review the role of timing of neuronal events, oscillatory behavior, and synaptic and non-synaptic influences in functional plasticity that can be recorded in awake animals in various physiological and pathological models in a perspective that also includes non-motor aspects of cerebellar function. We discuss organizational levels from genes through intracellular signaling, synaptic network to system and behavior, as well as processes from signal production and processing to memory, delegation, and actual learning. We suggest an integrative concept for control and learning based on articulated oscillation templates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Inda MC, Delgado-García JM, Carrión AM. Acquisition, consolidation, reconsolidation, and extinction of eyelid conditioning responses require de novo protein synthesis. J Neurosci. 2005;25:2070–80.

    Article  CAS  PubMed  Google Scholar 

  2. Botvinick MM. Hierarchical reinforcement learning and decision making. Curr Opin Neurobiol. 2012;22:956–62.

    Article  CAS  PubMed  Google Scholar 

  3. Delgado-García JM, Gruart A. Building new motor responses: eyelid conditioning revisited. Trends Neurosci. 2006;29:330–8.

    Article  PubMed  CAS  Google Scholar 

  4. Porras-García E, Sánchez-Campusano R, Martínez-Vargas D, Domínguez-del-Toro E, Cendelín J, Vozeh F, et al. Behavioral characteristics, associative learning capabilities, and dynamic association mapping in an animal model of cerebellar degeneration. J Neurophysiol. 2010;104:346–65.

    Article  PubMed  Google Scholar 

  5. Caroni P, Donato F, Muller D. Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci. 2012;13:478–90.

    Article  CAS  PubMed  Google Scholar 

  6. Buzsaki G. Rhythms of the brain. New York: Oxford University Press; 2006.

    Book  Google Scholar 

  7. Kelso JAS. Dynamics patterns; the self-organization of brain and behavior. Cambridge: The MIT Press; 1995.

    Google Scholar 

  8. Stanton PK, Sejnowski TJ. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature. 1989;339:215–8.

    Article  CAS  PubMed  Google Scholar 

  9. Huerta PT, Lisman JE. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature. 1993;364:723–5.

    Article  CAS  PubMed  Google Scholar 

  10. O'Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993;3:317–30.

    Article  PubMed  Google Scholar 

  11. Kamondi A, Acsády L, Wang XJ, Buzsáki G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus. 1998;8:244–61.

    Article  CAS  PubMed  Google Scholar 

  12. Jaramillo J, Schmidt R, Kempter R. Modeling inheritance of phase precession in the hippocampal formation. J Neurosci. 2014;34:7715–31.

    Article  CAS  PubMed  Google Scholar 

  13. Lisman JE, Jensen O. The θ-γ neural code. Neuron. 2013;77:1002–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ito M. The cerebellum and neural control. New York: Raven Press; 1984.

    Google Scholar 

  15. Welsh JP, Lang EJ, Suglhara I, Llinas R. Dynamic organization of motor control within the olivocerebellar system. Nature. 1995;374:453–7.

    Article  CAS  PubMed  Google Scholar 

  16. Rokni D, Llinás R, Yarom Y. The morpho/functional discrepancy in the cerebellar cortex: looks alone are deceptive. Front Neurosci. 2008;2:192–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Llinás RR. Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience. 2009;162:797–804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Llinás RR. Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story. J Physiol. 2011;589:3423–32. Review.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Eccles JC, Ito M, Szentágothai J. The cerebellum as a neuronal machine. Berlin: Springer-Verlag; 1967.

    Book  Google Scholar 

  20. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78:272–303.

    Article  PubMed  Google Scholar 

  21. De Gruijl JR, Hoogland TM, De Zeeuw CI. Behavioral correlates of complex spike synchrony in cerebellar microzones. J Neurosci. 2014;34:8937–47.

    Article  PubMed  CAS  Google Scholar 

  22. Galliano E, De Zeeuw CI. Questioning the cerebellar doctrine. Prog Brain Res. 2014;210:59–77.

    Article  PubMed  Google Scholar 

  23. Heiney SA, Kim J, Augustine GJ, Medina JF. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J Neurosci. 2014;34:2321–30.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Holmes G. Clinical symptoms of cerebellar disease and their interpretation. Lecture I. Lancet. 1922;202:1178–82.

    Google Scholar 

  25. Holmes G. Clinical symptoms of cerebellar disease and their interpretation. Lecture II. Lancet. 1922;202:1232–7.

    Google Scholar 

  26. Marie P, Foix C, Alajouanine T. De l’atrophie cerebelleuse tardive a predominance corticale. Rev Neurol. 1922;38:849–85.

    Google Scholar 

  27. Bremer F. Le cervelet In Traité de Physiologie. Paris: Masson; 1935.

    Google Scholar 

  28. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    CAS  PubMed  Google Scholar 

  29. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8:1491–3.

    Article  CAS  PubMed  Google Scholar 

  30. Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci U S A. 2010;107:8452–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coffman KA, Dum RP, Strick PL. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci U S A. 2011;108:16068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  33. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends Cogn Sci. 2013;17:241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M. Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci. 2013;38:3106–14.

    Article  PubMed  Google Scholar 

  35. Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science. 1996;272:545–7.

    Article  CAS  PubMed  Google Scholar 

  36. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78.

    Article  PubMed  Google Scholar 

  37. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage. 2012;59:1560–70.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mariën P, Ackermann H, Adamaszek M, Barwood CH, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13:386–410.

    PubMed  PubMed Central  Google Scholar 

  39. Schmahmann JD. The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev. 2010;20:236–60.

    Article  PubMed  Google Scholar 

  40. Holloway RL. Evolutionary of the human brain. In: Lock A, Peters CR, editors. Handbook of human symbolic evolution. Oxford: Clarendon; 1996. p. 74–108.

    Google Scholar 

  41. Weaver AH. Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci U S A. 2005;102:3576–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Palay SL, Chan-Palay V. Cerebellar cortex, cytology and organization. Berlin: Springer-Verlag; 1974.

    Book  Google Scholar 

  43. Eccles JC. The cerebellum as a computer: patterns in space and time. J Physiol. 1973;229:1–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D'Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits. 2013;6:116.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Manto MU, Pandolfo M. The cerebellum and its disorders. Cambridge: Cambridge UP; 2002.

    Google Scholar 

  47. Timmann D, Daum I. Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum. 2007;6:159–62.

    Article  PubMed  Google Scholar 

  48. Grimaldi G, Manto M. Topography of cerebellar deficits in humans. Cerebellum. 2012;11:336–51.

    Article  PubMed  Google Scholar 

  49. Thach WT, Bastian AJ. Role of the cerebellum in the control and adaptation of gait in health and disease. Prog Brain Res. 2004;143:353–66.

    Article  PubMed  Google Scholar 

  50. Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg coordination deficits to cerebellar gait ataxia. J Neurophysiol. 2003;89:1844–56.

    Article  PubMed  Google Scholar 

  51. Bosman LW, Konnerth A. Activity-dependent plasticity of developing climbing fiber-Purkinje cell synapses. Neuroscience. 2009;162:612–23.

    Article  CAS  PubMed  Google Scholar 

  52. Lui A. Quelques observations sur le développement histologique de l'écorce cérébelleuse par rapport à la faculté de se tenir debout et de marcher. Arch Ital Biol. 1894;21:395–7.

    Google Scholar 

  53. Cheron G, Bengoetxea A, Bouillot E, Lacquaniti F, Dan B. Early emergence of temporal co-ordination of lower limb segments elevation angles in human locomotion. Neurosci Lett. 2001;308:123–7.

    Article  CAS  PubMed  Google Scholar 

  54. Cheron G, Bouillot E, Dan B, Bengoetxea A, Draye JP, Lacquaniti F. Development of a kinematic coordination pattern in toddler locomotion: planar covariation. Exp Brain Res. 2001;137:455–66.

    Article  CAS  PubMed  Google Scholar 

  55. Leroi-Gourhan A. Le geste et la parole. Sciences d’Aujourd’hui. Paris: Albin Michel; 1964.

    Google Scholar 

  56. Shine JM, Shine R. Delegation to automaticity: the driving force for cognitive evolution? Front Neurosci. 2014;8:90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M. Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci U S A. 1997;94:1488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schiffmann SN, Cheron G, Lohof A, d'Alcantara P, Meyer M, Parmentier M, et al. Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci U S A. 1999;96:5257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bearzatto B, Servais L, Cheron G, Schiffmann SN. Age dependence of strain determinant on mice motor coordination. Brain Res. 2005;1039:37–42.

    Article  CAS  PubMed  Google Scholar 

  60. Farré-Castany MA, Schwaller B, Gregory P, Barski J, Mariethoz C, Eriksson JL, et al. Differences in locomotor behavior revealed in mice deficient for the calcium-binding proteins parvalbumin, calbindin D-28 k or both. Behav Brain Res. 2007;178:250–61.

    Article  PubMed  CAS  Google Scholar 

  61. Vinueza Veloz MF, Zhou K, Bosman LW, Potters JW, Negrello M, Seepers RM, et al. Cerebellar control of gait and interlimb coordination. Brain Struct Funct. 2014 In press.

  62. Martino G, Ivanenko YP, Serrao M, Ranavolo A, d'Avella A, Draicchio F, et al. Locomotor patterns in cerebellar ataxia. J Neurophysiol. 2014;112:2810–21.

  63. Nardone A, Turcato AM, Schieppati M. Effects of balance and gait rehabilitation in cerebellar disease of vascular or degenerative origin. Restor Neurol Neurosci. 2014;32:233–45.

    PubMed  Google Scholar 

  64. Hallett M, Shahani BT, Young RR. J. EMG analysis of patients with cerebellar deficits. Neurol Neurosurg Psychiatry. 1975;38:1163–9.

    Article  CAS  Google Scholar 

  65. Manto M, Godaux E, Jacquy J. Detection of silent cerebellar lesions by increasing the inertial load of the moving hand. Ann Neurol. 1995;37:344–50.

    Article  CAS  PubMed  Google Scholar 

  66. Dominici N, Ivanenko YP, Cappellini G, d'Avella A, Mondì V, Cicchese M, et al. Locomotor primitives in newborn babies and their development. Science. 2011;334:997–9.

    Article  CAS  PubMed  Google Scholar 

  67. Simpson JI, Wylie DR, De Zeeuw CI. On climbing fiber signals and their consequence(s). Behav Brain Sci. 1996;19:380–94.

    Google Scholar 

  68. Crill WE. Unitary multiple-spiked responses in cat inferior olive nucleus. J Neurophysiol. 1970;33:199–209.

    CAS  PubMed  Google Scholar 

  69. Bell CC, Kawasaki T. Relations among climbing fiber responses of nearby Purkinje cells. J Neurophysiol. 1972;35:155–69.

    CAS  PubMed  Google Scholar 

  70. Llinás R, Baker R, Sotelo C. Electronic coupling between neurons in cat inferior olive. J Neurophysiol. 1974;37:560–71.

    PubMed  Google Scholar 

  71. Sotelo C, Llinás R, Baker R. Structural study of inferior olivary nucleus of the cat: morphological correlates of electronic coupling. J Neurophysiol. 1974;37:541–59.

    CAS  PubMed  Google Scholar 

  72. Llinás R, Walton K, Hillman DE, Sotelo C. Inferior olive: its role in motor learning. Science. 1975;190:1230–1.

    Article  PubMed  Google Scholar 

  73. Welsh JP, Llinás R. Some organizing principles for the control of movement based on olivocerebellar physiology. Prog Brain Res. 1997;114:449–61.

    Article  CAS  PubMed  Google Scholar 

  74. Nicholson DA, Freeman Jr JH. Addition of inhibition in the olivocerebellar system and the ontogeny of a motor memory. Nat Neurosci. 2003;6:532–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nicholson DA, Freeman Jr JH. Selective developmental increase in the climbing fiber input to the cerebellar interpositus nucleus in rats. Behav Neurosci. 2004;118:1111–6.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Colin F, Manil J, Desclin JC. The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers. Brain Res. 1980;187:3–27.

    Article  CAS  PubMed  Google Scholar 

  77. Cheron G, Gall D, Servais L, Dan B, Maex R, Schiffmann SN. Inactivation of calcium-binding protein genes induces 160 Hz oscillations in the cerebellar cortex of alert mice. J Neurosci. 2004;24:434–41.

    Article  CAS  PubMed  Google Scholar 

  78. Cheron G, Servais L, Wagstaff J, Dan B. Fast cerebellar oscillation associated with ataxia in a mouse model of Angelman syndrome. Neuroscience. 2005;130:631–7.

    Article  CAS  PubMed  Google Scholar 

  79. Servais L, Hourez R, Bearzatto B, Gall D, Schiffmann SN, Cheron G. Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome. Proc Natl Acad Sci U S A. 2007;104:9858–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Strata P, Rossi F. Plasticity of the olivocerebellar pathway. Trends Neurosci. 1998;21:407–13.

    Article  CAS  PubMed  Google Scholar 

  81. Eccles JC, Llinás RR, Sasaki K. Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp Brain Res. 1966;1:17–39.

    CAS  PubMed  Google Scholar 

  82. Thach WT. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968;31:785–97.

    CAS  PubMed  Google Scholar 

  83. Davie JT, Clark BA, Häusser M. The origin of the complex spike in cerebellar Purkinje cells. J Neurosci. 2008;28:7599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. D'Angelo E. The organization of plasticity in the cerebellar cortex: from synapses to control. Prog Brain Res. 2014;210:31–58.

    Article  PubMed  Google Scholar 

  85. Callu D, López J, El Massioui N. Cerebellar deep nuclei involvement in cognitive adaptation and automaticity. Learn Mem. 2013;20:344–7.

    Article  PubMed  Google Scholar 

  86. Ohyama T, Nores WL, Medina JF, Riusech FA, Mauk MD. Learning-induced plasticity in deep cerebellar nucleus. J Neurosci. 2006;26:12656–63.

    Article  CAS  PubMed  Google Scholar 

  87. Yang Y, Lisberger SG. Interaction of plasticity and circuit organization during the acquisition of cerebellum-dependent motor learning. Elife. 2013;2:e01574.

    PubMed  PubMed Central  Google Scholar 

  88. Medina JF, Mauk MD. Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse. J Neurosci. 1999;19:7140–51.

    CAS  PubMed  Google Scholar 

  89. Garrido JA, Luque NR, D'Angelo E, Ros E. Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation. Front Neural Circuits. 2013;7:159.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001;294:1030–8.

    Article  CAS  PubMed  Google Scholar 

  91. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157:163–86.

    Article  CAS  PubMed  Google Scholar 

  92. Barmack NH, Qian Z, Yakhnitsa V. Climbing fibers induce microRNA transcription in cerebellar Purkinje cells. Neuroscience. 2010;171:655–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Barmack NH, Qian Z, Yakhnitsa V. Long-term climbing fibre activity induces transcription of microRNAs in cerebellar Purkinje cells. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.

    Article  CAS  Google Scholar 

  94. McEvoy M, Cao G, Montero Llopis P, Kundel M, Jones K, Hofler C, et al. Cytoplasmic polyadenylation element binding protein 1-mediated mRNA translation in Purkinje neurons is required for cerebellar long-term depression and motor coordination. J Neurosci. 2007;27:6400–11.

    Article  CAS  PubMed  Google Scholar 

  95. Marr D. A theory of cerebellar cortex. J Physiol Lond. 1969;202:437–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  97. Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.

    Article  CAS  PubMed  Google Scholar 

  98. Ito M. Neural design of the cerebellar motor control system. Brain Res. 1972;40:81–4.

    Article  CAS  PubMed  Google Scholar 

  99. Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol. 1982;324:113–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ekerot CF, Kano M. Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res. 1985;342:357–60.

    Article  CAS  PubMed  Google Scholar 

  101. Ekerot CF, Kano M. Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neurosci Res. 1989;6:264–8.

    Article  CAS  PubMed  Google Scholar 

  102. Conquet F, Bashir ZI, Davies CH, Daniel H, Ferraguti F, Bordi F, et al. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature. 1994;372:237–43.

    Article  CAS  PubMed  Google Scholar 

  103. Hartell NA. Induction of cerebellar long-term depression requires activation of glutamate metabotropic receptors. Neuroreport. 1994;5:913–6.

    Article  CAS  PubMed  Google Scholar 

  104. Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, et al. mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science. 2000;288:1832–5.

    Article  CAS  PubMed  Google Scholar 

  105. Crepel F, Krupa M. Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Res. 1988;458:397–401.

    Article  CAS  PubMed  Google Scholar 

  106. Linden DJ, Connor JA. Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science. 1991;254:1656–9.

    Article  CAS  PubMed  Google Scholar 

  107. Wang YT, Linden DJ. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron. 2000;25:635–47.

    Article  CAS  PubMed  Google Scholar 

  108. Shibuki K, Okada D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature. 1991;349:326–8.

    Article  CAS  PubMed  Google Scholar 

  109. Lev-Ram V, Jiang T, Wood J, Lawrence DS, Tsien RY. Synergies and coincidence requirements between NO, cGMP, and Ca2+ in the induction of cerebellar long-term depression. Neuron. 1997;18:1025–38.

    Article  CAS  PubMed  Google Scholar 

  110. Hansel C, de Jeu M, Belmeguenai A, Houtman SH, Buitendijk GH, Andreev D, et al. aCaMKII is essential for cerebellar LTD and motor learning. Neuron. 2006;51:835–43.

    Article  CAS  PubMed  Google Scholar 

  111. Anggono V, Koç-Schmitz Y, Widagdo J, Kormann J, Quan A, Chen CM, et al. PICK1 interacts with PACSIN to regulate AMPA receptor internalization and cerebellar long-term depression. Proc Natl Acad Sci U S A. 2013;110:13976–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kano M, Kato M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature. 1987;325:276–9.

    Article  CAS  PubMed  Google Scholar 

  113. Gao W, Dunbar RL, Chen G, Reinert KC, Oberdick J, Ebner TJ. Optical imaging of long-term depression in the mouse cerebellar cortex in vivo. J Neurosci. 2003;23:1859–66.

    CAS  PubMed  Google Scholar 

  114. Márquez-Ruiz J, Cheron G. Sensory stimulation-dependent plasticity in the cerebellar cortex of alert mice. PLoS One. 2012;7(4):e36184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Hansel C, Linden DJ, D'Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci. 2001;4:467–75.

    CAS  PubMed  Google Scholar 

  116. Welsh JP, Yamaguchi H, Zeng XH, Kojo M, Nakada Y, Takagi A, et al. Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proc Natl Acad Sci U S A. 2005;102:17166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Medina JF. The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Curr Opin Neurobiol. 2011;21:616–22. Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gao Z, van Beugen BJ, De Zeeuw CI. Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.

    Article  CAS  PubMed  Google Scholar 

  119. Rasmussen A, Jirenhed DA, Zucca R, Johansson F, Svensson P, Hesslow G. Number of spikes in climbing fibers determines the direction of cerebellar learning. J Neurosci. 2013;33:13436–40.

    Article  CAS  PubMed  Google Scholar 

  120. Yang Y, Lisberger SG. Role of plasticity at different sites across the time course of cerebellar motor learning. J Neurosci. 2014;34:7077–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mathy A, Ho SS, Davie JT, Duguid IC, Clark BA, Häusser M. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron. 2009;62:388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Najafi F, Giovannucci A, Wang SS, Medina JF. Sensory-driven enhancement of calcium signals in individual Purkinje cell dendrites of awake mice. Cell Rep. 2014;6:792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bower JM. Is the cerebellum sensory for motor’s sake, or motor for sensory’s sake: the view from the whiskers of a rat? Prog Brain Res. 1997;114:463–96.

    Article  CAS  PubMed  Google Scholar 

  124. D'Angelo E, De Zeeuw CI. Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci. 2009;32:30–40.

    Article  PubMed  CAS  Google Scholar 

  125. De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci. 2011;12:327–44.

    Article  PubMed  CAS  Google Scholar 

  126. Rahmati N, Owens CB, Bosman LW, Spanke JK, Lindeman S, Gong W, et al. Cerebellar potentiation and learning a whisker-based object localization task with a time response window. J Neurosci. 2014;34:1949–62.

    Article  CAS  PubMed  Google Scholar 

  127. Cheron G, Sausbier M, Sausbier U, Neuhuber W, Ruth P, Dan B, et al. BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS One. 2009;4(11):e7991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bosman LW, Koekkoek SK, Shapiro J, Rijken BF, Zandstra F, van der Ende B, et al. Encoding of whisker input by cerebellar Purkinje cells. J Physiol. 2010;588:3757–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Llinás RR. General discussion: radial connectivity in the cerebellar cortex: a novel view regarding the functional organization of the molecular layer. In: Palay SL, Chan-Palay V, editors. The cerebellum: new vistas. New York: Springer Verlag; 1982. p. 189–94.

    Chapter  Google Scholar 

  130. Márquez-Ruiz J, Prigogine C, Cheron J, Ammann C, Dan B, Saubier M. et al. Ablation of BK channels in Purkinje cell impairs LTD timing plasticity in awake animals. Soc Neurosci Abstr. 469.02, 2013.

  131. Chen X, Kovalchuk Y, Adelsberger H, Henning HA, Sausbier M, Wietzorrek G, et al. Disruption of the olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels. Proc Natl Acad Sci U S A. 2010;107:12323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Knuesel I, Mastrocola M, Zuellig RA, Bornhauser B, Schaub MC, Fritschy JM. Short communication: altered synaptic clustering of GABAA receptors in mice lacking dystrophin (mdx mice). Eur J Neurosci. 1999;11:4457–62.

    Article  CAS  PubMed  Google Scholar 

  133. Prigogine C, Dan B, Cheron G. Purkinje cell firing alteration in mdx mice. Dev Med Child Neurol. 2011;52:4.

    Google Scholar 

  134. Gundappa-Sulur G, De Schutter E, Bower JM. Ascending granule cell axon: an important component of cerebellar cortical circuitry. J Comp Neurol. 1999;408:580–96.

    Article  CAS  PubMed  Google Scholar 

  135. Sims RE, Hartell NA. Differential susceptibility to synaptic plasticity reveals a functional specialization of ascending axon and parallel fiber synapses to cerebellar Purkinje cells. J Neurosci. 2006;26:5153–9.

    Article  CAS  PubMed  Google Scholar 

  136. Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY. Reversing cerebellar long-term depression. Proc Natl Acad Sci U S A. 2003;100:15989–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jorntell H, Ekerot CF. Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron. 2002;34:797–806.

    Article  CAS  PubMed  Google Scholar 

  138. Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;44:691–700.

    Article  CAS  PubMed  Google Scholar 

  139. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.

    Article  CAS  PubMed  Google Scholar 

  140. Llinás R, Jahnsen H. Electrophysiology of mammalian thalamic neurones in vitro. Nature. 1982;297:406–8.

    Article  PubMed  Google Scholar 

  141. Courtemanche R, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol. 2005;93:2039–52.

    Article  PubMed  Google Scholar 

  142. Traub RD, Whittington MA. Cortical oscillations in health and disease. New York: Oxford University Press; 2010.

    Book  Google Scholar 

  143. Llinás R, Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981;315:549–67.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Voogd J. What we do not know about cerebellar systems neuroscience. Front Syst Neurosci. 2014;8:227. doi:10.3389/fnsys.2014.00227. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Braitenberg V. Functional interpretation of cerebellar histology. Nature. 1961;190:539–40.

    Article  Google Scholar 

  146. Whittington MA, Traub RD, Jefferys JG. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. 1995;373:612–5.

    Article  CAS  PubMed  Google Scholar 

  147. Traub RD, Whittington MA, Stanford IM, Jefferys JG. A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature. 1996;383:621–4.

    Article  CAS  PubMed  Google Scholar 

  148. Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24.

    Article  CAS  PubMed  Google Scholar 

  149. Brunet NM, Bosman CA, Vinck M, Roberts M, Oostenveld R, Desimone R, et al. Stimulus repetition modulates gamma-band synchronization in primate visual cortex. Proc Natl Acad Sci U S A. 2014;111:3626–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sanes JN, Donoghue JP. Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc Natl Acad Sci U S A. 1993;90:4470–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cebolla AM, Palmero-Soler E, Dan B, Cheron G. Frontal phasic and oscillatory generators of the N30 somatosensory evoked potential. Neuroimage. 2011;54:1297–306.

    Article  CAS  PubMed  Google Scholar 

  152. Cebolla AM, Palmero-Soler E, Dan B, Cheron G. Modulation of the N30 generators of the somatosensory evoked potentials by the mirror neuron system. Neuroimage. 2014;95:48–60.

    Article  CAS  PubMed  Google Scholar 

  153. De Zeeuw CI, Lang EJ, Sugihara I, Ruigrok TJ, Eisenman LM, Mugnaini E, et al. Morphological correlates of bilateral synchrony in the rat cerebellar cortex. J Neurosci. 1996;16:3412–26.

    PubMed  Google Scholar 

  154. Chorev E, Yarom Y, Lampl I. Rhythmic episodes of subthreshold membrane potential oscillations in the rat inferior olive nuclei in vivo. J Neurosci. 2007;27:5043–52.

    Article  CAS  PubMed  Google Scholar 

  155. De Gruijl JR, Bazzigaluppi P, de Jeu MT, De Zeeuw CI. Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLoS Comput Biol. 2012;8(12):e1002814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Maruta J, Hensbroek RA, Simpson JL. Intraburst and interburst signaling by climbing fibers. J Neurosci. 2007;27(42):11263–70.

    Article  CAS  PubMed  Google Scholar 

  157. Pellerin JP, Lamarre Y. Local field potential oscillations in primate cerebellar cortex during voluntary movement. J Neurophysiol. 1997;78:3502–7.

    CAS  PubMed  Google Scholar 

  158. Hartmann MJ, Bower JM. Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol. 1998;80:1598–604.

    CAS  PubMed  Google Scholar 

  159. Courtemanche R, Pellerin JP, Lamarre Y. Local field potential oscillations in primate cerebellar cortex: modulation during active and passive expectancy. J Neurophysiol. 2002;88:771–82.

    PubMed  Google Scholar 

  160. Courtemanche R, Chabaud P, Lamarre Y. Synchronization in primate cerebellar granule cell layer local field potentials: basic anisotropy and dynamic changes during active expectancy. Front Cell Neurosci. 2009;3:6.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ito M, Yoshida M. The origin of cerebral-induced inhibition of Deiters neurones. I. Monosynaptic initiation of the inhibitory postsynaptic potentials. Exp Brain Res. 1966;2:330–49.

    CAS  PubMed  Google Scholar 

  162. de Solages C, Szapiro G, Brunel N, Hakim V, Isope P, Buisseret P, et al. High-frequency organization and synchrony of activity in the Purkinje cell layer of the cerebellum. Neuron. 2008;58:775–88.

    Article  PubMed  CAS  Google Scholar 

  163. Heck DH, Thach WT. Keating JG On-beam synchrony in the cerebellum as the mechanism for the timing and coordination of movement. Proc Natl Acad Sci U S A. 2007;104:7658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cheron G, Servais L, Dan B. Cerebellar network plasticity: from genes to fast oscillation. Neuroscience. 2008;153:1–19.

    Article  CAS  PubMed  Google Scholar 

  165. Courtemanche R, Robinson JC, Aponte DI. Linking oscillations in cerebellar circuits. Front Neural Circuits. 2013;7:125.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Dieudonné S, Dumoulin A. Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci. 2000;20:1837–48.

    PubMed  Google Scholar 

  167. Lainé J, Axelrad H. Morphology of the Golgi-impregnated Lugaro cell in the rat cerebellar cortex: a reappraisal with a description of its axon. J Comp Neurol. 1996;375:618–40.

    Article  PubMed  Google Scholar 

  168. Lainé J, Axelrad H. Extending the cerebellar Lugaro cell class. Neuroscience. 2002;115:363–74.

    Article  PubMed  Google Scholar 

  169. Dugué GP, Brunel N, Hakim V, Schwartz E, Chat M, Lévesque M, et al. Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron. 2009;61:126–39.

    Article  PubMed  CAS  Google Scholar 

  170. Middleton SJ, Racca C, Cunningham MO, Traub RD, Monyer H, Knöpfel T, et al. High-frequency network oscillations in cerebellar cortex. Neuron. 2008;58:763–74.

    Article  CAS  PubMed  Google Scholar 

  171. Akemann W, Middleton SJ, Knöpfel T. Optical imaging as a link between cellular neurophysiology and circuit modeling. Front Cell Neurosci. 2009;3:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Adrian ED. Discharge frequencies in the central and cerebellar cortex. J Physiol Lond. 1935;83:33P.

    Google Scholar 

  173. De Zeeuw CI, Hoebeek FE, Schonewille M. Causes and consequences of oscillations in the cerebellar cortex. Neuron. 2008;58:655–8.

    Article  PubMed  CAS  Google Scholar 

  174. Traub RD, Middleton SJ, Knöpfel T, Whittington MA. Model of very fast (>75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. Eur J Neurosci. 2008;28:1603–16.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Servais L, Bearzatto B, Schwaller B, Dumont M, De Saedeleer C, Dan B, et al. Mono- and dual-frequency fast cerebellar oscillation in mice lacking parvalbumin and/or calbindin D-28 k. Eur J Neurosci. 2005;22:861–70.

    Article  CAS  PubMed  Google Scholar 

  176. Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21:370–5. Review.

    Article  CAS  PubMed  Google Scholar 

  177. Orduz D, Llano I. Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells. Proc Natl Acad Sci U S A. 2007;104:17831–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Goossens J, Daniel H, Rancillac A, van der Steen J, Oberdick J, Crépel F, et al. Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J Neurosci. 2001;21:5813–23.

    CAS  PubMed  Google Scholar 

  179. Servais L, Cheron G. Purkinje cell rhythmicity and synchronicity during modulation of fast cerebellar oscillation. Neuroscience. 2005;134:1247–59.

    Article  CAS  PubMed  Google Scholar 

  180. Grenier F, Timofeev I, Steriade MJ. Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates. J Neurophysiol. 2001;86:1884–98.

    CAS  PubMed  Google Scholar 

  181. Grenier F, Timofeev I, Steriade M. Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates. J Neurophysiol. 2003;89:841–52.

    Article  PubMed  Google Scholar 

  182. Traub RD. Fast oscillations and epilepsy. Epilepsy Curr. 2003;3:77–9.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Foust A, Popovic M, Zecevic D, McCormick DA. Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J Neurosci. 2010;30:6891–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cheron G, Márquez-Ruiz J, Kishino T, Dan B. Disruption of the LTD dialogue between the cerebellum and the cortex in Angelman syndrome model: a timing hypothesis. Front Syst Neurosci 2014; 19;8:221. doi:10.3389/fnsys.2014.00221. eCollection 2014In press.

  185. Llinás R, Mühlethaler M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol. 1988;404:241–58.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Fernandez FR, Engbers JDT, Turner RW. Firing dynamics of cerebellar Purkinje cells. J Neurophysiol. 2007;98:278–94.

    Article  PubMed  Google Scholar 

  187. McKay BE, Engbers JDT, Mehaffey WH, Gordon GRJ, Molineux ML, Bains JS, et al. Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of Purkinje cell output. J Neurophysiol. 2007;97:2590–604.

    Article  CAS  PubMed  Google Scholar 

  188. Kitamura K, Häusser M. Dendritic calcium signaling triggered by spontaneous and sensory-evoked climbing fiber input to cerebellar Purkinje cells in vivo. J Neurosci. 2011;31:10847–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Engbers JDT, Fernandez FR, Turner RW. Bistability in Purkinje neurons: ups and downs in cerebellar research. Neural Netw. 2013;47:18–31.

    Article  PubMed  Google Scholar 

  190. Cheron G, Prigogine C, Cheron J, Márquez-Ruiz J, Traub RD, Dan B. Emergence of a 600-Hz buzz UP state Purkinje cell firing in alert mice. Neuroscience. 2014;263:15–26. doi:10.1016/j.neuroscience.2014.01.007. Epub 2014 Jan 15.

    Article  CAS  PubMed  Google Scholar 

  191. Person AL, Raman IM. Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature. 2011;481(7382):502–5. doi:10.1038/nature10732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Person AL, Raman IM. Synchrony and neural coding in cerebellar circuits. Front Neural Circuits. 2012;6:97. doi:10.3389/fncir.2012.00097. eCollection 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Llinás R, Volkind RA. The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res. 1973;18:69–87.

    Article  PubMed  Google Scholar 

  194. Grasselli G, Hansel C. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse cerebellar long-term potentiation: cellular mechanisms and role in learning. Int Rev Neurobiol. 2014;117:39–51.

    Article  PubMed  Google Scholar 

  195. Hirano T, Around LTD. Hypothesis in motor learning. Cerebellum. 2014;13:645–50.

    Article  PubMed  Google Scholar 

  196. Ito M, Yamaguchi K, Nagao S, Yamazaki T. Long-term depression as a model of cerebellar plasticity. Prog Brain Res. 2014;210:1–30.

    Article  PubMed  Google Scholar 

  197. Barski JJ, Hartmann J, Rose CR, Hoebeek F, Mörl K, Noll-Hussong M, et al. Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination. J Neurosci. 2003;23:3469–77.

    CAS  PubMed  Google Scholar 

  198. Belmeguenai A, Botta P, Weber JT, Carta M, De Ruiter M, De Zeeuw CI, et al. Alcohol impairs long-term depression at the cerebellar parallel fiber-Purkinje cell synapse. J Neurophysiol. 2008;100:3167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank T. D’Angelo, M. Dufief, J. Francq, S. Henuy, E. Hortmanns, M. Petieau, E. Toussaint, and R. Sánchez-Campusano for expert technical assistance. This work was funded by the Belgian Federal Science Policy Office, the European Space Agency (AO-2004, 118), the Belgian National Fund for Scientific Research (FNRS), and the research funds of the Université Libre de Bruxelles and the Université de Mons (Belgium) and the Fund Leibu. This work was also supported by the Association Française contre les Myopathies (AFM) and the Ministerio de Educación y Ciencia Programa Nacional de Movilidad de Recursos Humanos del Plan Nacional de I-D + I 2008–2011 of the Spanish Government.

Conflict of Interest

The authors state that potential conflicts of interests do not exist about the present manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cheron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheron, G., Márquez-Ruiz, J. & Dan, B. Oscillations, Timing, Plasticity, and Learning in the Cerebellum. Cerebellum 15, 122–138 (2016). https://doi.org/10.1007/s12311-015-0665-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0665-9

Keywords

Navigation