Skip to main content
Log in

Relationships Between Regional Cerebellar Volume and Sensorimotor and Cognitive Function in Young and Older Adults

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum has been implicated in both sensorimotor and cognitive function, but is known to undergo volumetric declines with advanced age. Individual differences in regional cerebellar volume may therefore provide insight into performance variability across the lifespan, as has been shown with other brain structures and behaviors. Here, we investigated whether there are regional age differences in cerebellar volume in young and older adults, and whether these volumes explain, in part, individual differences in sensorimotor and cognitive task performance. We found that older adults had smaller cerebellar volume than young adults; specifically, lobules in the anterior cerebellum were more impacted by age. Multiple regression analyses for both age groups revealed associations between sensorimotor task performance in several domains (balance, choice reaction time, and timing) and regional cerebellar volume. There were also relationships with working memory, but none with measures of general cognitive or executive function. Follow-up analyses revealed several differential relationships with age between regional volume and sensorimotor performance. These relationships were predominantly selective to cerebellar regions that have been implicated in cognitive functions. Therefore, it may be the cognitive aspects of sensorimotor task performance that are best explained by individual differences in regional cerebellar volumes. In sum, our results demonstrate the importance of regional cerebellar volume with respect to both sensorimotor and cognitive performance, and we provide additional insight into the role of the cerebellum in age-related performance declines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kanai R, Rees G. The structural basis of inter-individual differences in human behaviour and cognition. Nat Rev Neurosci. 2011;12:231–42.

    Article  PubMed  CAS  Google Scholar 

  2. Sullivan EV, Rose J, Pfefferbaum A. Physiological and focal cerebellar substrates of abnormal postural sway and tremor in alcoholic women. Biol Psychiatry. 2010;67:44–51.

    Article  PubMed  Google Scholar 

  3. Morton SM, Bastian AJ. Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. J Neurophysiol. 2003;89:1844–56.

    Article  PubMed  Google Scholar 

  4. Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10:247–59.

    Article  PubMed  Google Scholar 

  5. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  6. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Pütz B, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403:192–5.

    Article  PubMed  CAS  Google Scholar 

  7. Jueptner M, Rijntjes M, Wieller C, Faiss JH, Timmann D, Mueller SP, et al. Localization of a cerebellar timing process using PET. Neurology. 1995;45:1540–5.

    Article  PubMed  CAS  Google Scholar 

  8. Kim S-G, Ugurbil K, Strick PL. Activation of a cerebellar output nucleus during cognitive processing. Science. 1994;265:949–51.

    Article  PubMed  CAS  Google Scholar 

  9. Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37.

    Article  PubMed  Google Scholar 

  10. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage. 2012;4:489–501.

    Google Scholar 

  11. Baloh RW, Jacobson KM, Beykirch K, Honrubia V. Static and dynamic posturography in patients with vestibular and cerebellar lesions. Arch Neurol. 1998;33:650–4.

    Google Scholar 

  12. Mauritz KH, Dichgans J, Hufschmidt A. Quantitative analysis of stance in late cortical cerebellar atrophy of the anterior lobe and other forms of cerebellar ataxia. Brain. 1979;102:461–82.

    Article  PubMed  CAS  Google Scholar 

  13. Silfversköld BP. Cortical cerebellar degeneration associated with a specific disorder of standing and locomotion. Acta Neurol Scand. 1977;55:257–72.

    Article  Google Scholar 

  14. Ivry RB, Keele SW, Diener HC. Dissociation of lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73:167–80.

    Article  PubMed  CAS  Google Scholar 

  15. Spencer RMC, Zelaznik HN, Diedrichsen J, Ivry RB. Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science. 2003;300:1437–9.

    Article  PubMed  CAS  Google Scholar 

  16. Gerwig M, Hajjar K, Dimitrova A, Maschke M, Kolb FP, Frings M, et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25:3919–31.

    Article  PubMed  CAS  Google Scholar 

  17. Gerwig M, Guberina H, Eßer AC, Siebler M, Choch B, Frings M, et al. Evaluation of multiple-session delay eyeblink conditioning comparing patients with focal cerebellar lesions and cerebellar degeneration. Behav Brain Res. 2010;212:143–51.

    Article  PubMed  Google Scholar 

  18. Dimitrova A, Gerwig M, Brol B, Gizewski ER, Forsting M, Beck A, et al. Correlation of cerebellar volume with eyeblink conditioning in healthy subjects and in patients with cerebellar cortical degeneration. Brain Res. 2008;1198:73–84.

    Article  PubMed  CAS  Google Scholar 

  19. Cheng DT, Disterhoft JF, Power JM, Ellis DA, Desmond JE. Neural substrates underlying human delay and trace eyeblink conditioning. Proc Natl Acad Sci USA. 2008;105:8108–13.

    Article  PubMed  CAS  Google Scholar 

  20. Schumacher EH, Lauber E, Awh E, Jonides J, Smith EE, Koeppe RA. PET evidence for an amodal verbal working memory system. NeuroImage. 1996;3:79–88.

    Article  PubMed  CAS  Google Scholar 

  21. Marvel CL, Desmond JE. Functional topography of the cerebellum in verbal working memory. Neuropsychol Rev. 2010;20:271–9.

    Article  PubMed  Google Scholar 

  22. Allen G, Buxton R, Wong E, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science. 1997;275(5308):1940–3.

    Article  PubMed  CAS  Google Scholar 

  23. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21:700–12.

    PubMed  CAS  Google Scholar 

  24. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    PubMed  CAS  Google Scholar 

  25. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  PubMed  CAS  Google Scholar 

  26. Salmi J, Pallesen KJ, Neuvonen T, Brattico E, Korvenoja A, Salonen O, et al. Cognitive and motor loops of the human cerebro-cerebellar system. J Cogn Neurosci. 2010;22(11):2663–76.

    Article  PubMed  Google Scholar 

  27. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19:2485–97.

    Article  PubMed  Google Scholar 

  28. Bernard JA, Seidler RD, Hassevoort KM, Benson BL, Welsh RC, Wiggins JL, et al. Resting-state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanat. 2012;6:31.

    Article  PubMed  Google Scholar 

  29. Bernard JA, Peltier SJ, Benson BL, Wiggins JL, Jaeggi SM, Buschkuehl M, et al. Dissociable networks of the human dentate nucleus. Cereb Cortex 2013 (in press).

  30. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.

    Article  PubMed  Google Scholar 

  31. Stoodley CJ, Valera EM, Schmahmann JD. An fMRI study of intra-individual functional topography in the human cerebellum. Behav Neurol. 2010;23:65–79.

    PubMed  Google Scholar 

  32. Woodruff-Pak DS, Goldenberg G, Downey-Lamb MM, Boyko OB, Lemieux SK. Cerebellar volume in humans related to magnitude of classical conditioning. NeuroReport. 2000;3:609–15.

    Article  Google Scholar 

  33. Woodruff-Pak DS, Vogel III RW, Ewers M, Coffey J, Boyko OB, Lemieux SK. MRI-assessed volume of cerebellum correlates with associative learning. Neurobiol Learn Mem. 2001;76:342–57.

    Article  PubMed  CAS  Google Scholar 

  34. Eckert MA, Keren NI, Roberts DR, Calhoun VD, Harris KC. Age-related changes in processing speed: unique contributions of cerebellar and prefrontal cortex. Front Hum Neurosci. 2010;4:1–14.

    Google Scholar 

  35. Raz N, Williamson A, Gunning-Dixon F, Head D, Acker JD. Neuroanatomical and cognitive correlates of adult age differences in acquisition of a perceptual-motor skill. Microsc Res Tech. 2000;51:85–93.

    Article  PubMed  CAS  Google Scholar 

  36. Basak C, Voss MW, Erickson KI, Root WR, Kramer AF. Regional differences in brain volume predict the acquisition of skill in a complex real-time strategy videogame. Brain Cogn. 2011;76:407–14.

    Article  PubMed  Google Scholar 

  37. Sullivan EV, Desmond JE, Deshmuk A, Lim KO, Pfefferbaum A. Cerebellar volume decline in normal aging, alcoholism, and Korsakoff’s syndrome: relation to ataxia. Neuropsychology. 2000;3:341–52.

    Article  Google Scholar 

  38. MacLullich AMJ, Edmond CL, Ferguson KJ, Wardlaw JM, Starr JM, Seckl JR, et al. Size of the neocerebellar vermis is associated with cognition in healthy elderly men. Brain Cogn. 2004;56:344–8.

    Article  PubMed  Google Scholar 

  39. Park DC, Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol. 2009;60:173–96.

    Article  PubMed  Google Scholar 

  40. Reuter-Lorenz PA, Jonides J, Smith EE, Hartley A, Miller A, Marshuetz C, et al. Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J Cogn Neurosci. 2000;12:174–87.

    Article  PubMed  CAS  Google Scholar 

  41. Raz N, Rodrigue KM, Kennedy KM, Acker JD. Vascular healthy and longitudinal changes in brain and cognition in middle-aged and older adults. Neuropsychology. 2007;21:149–57.

    Article  PubMed  Google Scholar 

  42. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, et al. Motor control and aging: links to brain structural, functional and biochemical changes. Neurosci Biobehav Rev. 2010;34:721–33.

    Article  PubMed  CAS  Google Scholar 

  43. Luft AR, Skalej M, Schultz JB, Welte D, Kolb R, Bürk K, et al. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb Cortex. 1999;9:712–21.

    Article  PubMed  CAS  Google Scholar 

  44. Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging. 2001;22:581–94.

    Article  PubMed  CAS  Google Scholar 

  45. Raz N, Dupuis JH, Briggs SD, McGavran C, Acker JD. Differential effects of age and sex on the cerebellar hemispheres and the vermis: a prospective MR study. Am J Neuroradiol. 1998;19:65–71.

    PubMed  CAS  Google Scholar 

  46. Raz N, Gunning-Dixon F, Head D, Williamson A, Acker JD. Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. Am J Neuroradiol. 2001;22:1161–7.

    PubMed  CAS  Google Scholar 

  47. Raz N, Lindenberger U, Ghisletta P, Rodrigue KM, Kennedy KM, Acker JD. Neuroanatomical correlates of fluid intelligence in healthy adults and persons with vascular risk factors. Cereb Cortex. 2008;18:718–26.

    Article  PubMed  Google Scholar 

  48. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005;15:1676–89.

    Article  PubMed  Google Scholar 

  49. Hoogendam YY, van der Geest JN, van der Lijn F, van der Lugt A, Niessen WJ, Krestin GP, et al. Determinants of cerebellar and cerebral volume in the general elderly population. Neurobiol Aging. 2012;33(12):2774–8.

    Article  PubMed  Google Scholar 

  50. Wang D, Buckner RL, Liu H. Cerebellar asymmetry and its relation to cerebral asymmetry estimated by intrinsic functional connectivity. J Neurophysiol. 2013;109:46–57.

    Article  PubMed  Google Scholar 

  51. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33:127–38.

    Article  PubMed  Google Scholar 

  52. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46:39–46.

    Article  PubMed  Google Scholar 

  53. Avants BB, Epstein CL, Grossman M, Gee JC. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and nerodegenerative brain. J Med Image Anal. 2008;12:26–41.

    Article  CAS  Google Scholar 

  54. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.

    Article  PubMed  Google Scholar 

  55. Reitan RM, Wolfson D. The Halstead–Reitan neuropsychological test battery. Tucson, AZ: Neuropsychology Press; 1985.

    Google Scholar 

  56. Sternberg S. High-speed scanning in human memory. Science. 1966;153:652–4.

    Article  PubMed  CAS  Google Scholar 

  57. Desmond JE, Chen SHA, Shieh PB. Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol. 2005;8:53–560.

    Google Scholar 

  58. Inoue K, Kawashima R, Satoh K, Kinomura S, Sugiura M, Goto R, et al. A PET study of visuomotor learning under optical rotation. NeuroImage. 2000;11:505–16.

    Article  PubMed  CAS  Google Scholar 

  59. Anguera JA, Reuter-Lorenz PA, Willingham DT, Seidler RD. Contributions of spatial working memory to visuomotor learning. J Cogn Neurosci. 2009;22:1917–30.

    Article  Google Scholar 

  60. Teasedale N, Bard C, Fleury M, Young DE, Proteau L. Determining movement onsets from temporal series. J Motor Behav. 1993;25:97–106.

    Article  Google Scholar 

  61. Benson BL, Anguera JA, Seidler RD. An explicit strategy improves performance but impairs sensorimotor adaptation. J Neurophysiol. 2011;105:2843–51.

    Article  PubMed  Google Scholar 

  62. Wing AM, Kristofferson AB. The timing of interresponse intervals. Percept Psychophys. 1973;13:455–60.

    Article  Google Scholar 

  63. Powell LE, Myers AM. The activities-specific balance confidence (ABC) scale. J Gerontol A: Biol Med Sci. 1995;50A:M28–34.

    Article  CAS  Google Scholar 

  64. Fan L, Tang Y, Sun B, Gong G, Chen ZJ, Lin X, et al. Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study. Brain Res. 2010;1353:60–73.

    Article  PubMed  CAS  Google Scholar 

  65. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71:44–56.

    Article  PubMed  CAS  Google Scholar 

  66. Salat DH, Buckner RL, Snyder AZ, Greve DN, Desikan RSR, Busa E, et al. Thinning of the cerebral cortex in aging. Cereb Cortex. 2004;14:721–30.

    Article  PubMed  Google Scholar 

  67. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2245–322.

    Article  Google Scholar 

  68. O’Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex. 2010;20:953–65.

    Article  PubMed  Google Scholar 

  69. Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M. Brain activation during maintenance of standing postures in humans. Brain. 1999;122:329–38.

    Article  PubMed  Google Scholar 

  70. Huxhold O, Li S-C, Schmiedek F, Lindenberger U. Dual-tasking postural control: aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res Bull. 2006;69:294–305.

    Article  PubMed  Google Scholar 

  71. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.

    Article  PubMed  CAS  Google Scholar 

  72. Smith EE. Choice reaction time: an analysis of the major theoretical positions. Psychol Bull. 1968;69:77–110.

    Article  PubMed  CAS  Google Scholar 

  73. Osman A, Kornblum S, Meyer DE. The point of no return in choice reaction time: controlled and ballistic stages of response preparation. J Exp Psychol Hum. 1986;12:243–58.

    Article  CAS  Google Scholar 

  74. Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13:250–5.

    Article  PubMed  CAS  Google Scholar 

  75. Ivry RB, Spencer RMC. The neural representation of time. Curr Opin Neurobiol. 2004;14:225–32.

    Article  PubMed  CAS  Google Scholar 

  76. Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13:55–73.

    Article  PubMed  CAS  Google Scholar 

  77. Coffman KA, Dum RP, Strick PL. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci USA. 2011;108:16068–73.

    Article  PubMed  CAS  Google Scholar 

  78. Penhune VB, Zatorre RJ, Evans AC. Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci. 1998;10:752–65.

    Article  PubMed  CAS  Google Scholar 

  79. Théoret H, Haque J, Pascual-Leone A. Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett. 2001;306:29–32.

    Article  PubMed  Google Scholar 

  80. Grube M, Lee K-H, Griffiths TD, Barker AT, Woodruff PW. Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Front Psychol. 2010;1:171.

    Article  PubMed  Google Scholar 

  81. Della-Maggiore V, Scholz J, Johansen-Berg H, Paus T. The rate of visuomotor adaptation correlates with cerebellar white-matter microstructure. Hum Brain Mapp. 2009;30(12):4048–53.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

JAB was supported by NIH T32 AG000114 (S. Pletcher, PI). JAB (alumna) and RDS (faculty) are members of the International Max Planck Research School on the Life Course (LIFE, www.imprs-life.mpg.de; participating institutions: MPI for Human Development, Humboldt-Universität zu Berlin, Freie Universität Berlin, University of Michigan, University of Virginia, University of Zurich). The authors wish to thank Lauren Wu and Maggie Smith for their help with data preprocessing.

Conflict of Interest Statement

The authors declare no conflicts of interest related to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica A. Bernard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, J.A., Seidler, R.D. Relationships Between Regional Cerebellar Volume and Sensorimotor and Cognitive Function in Young and Older Adults. Cerebellum 12, 721–737 (2013). https://doi.org/10.1007/s12311-013-0481-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-013-0481-z

Keywords

Navigation