Skip to main content
Log in

Regulation of Epithelial-Mesenchymal Transition by Transmission of Mechanical Stress through Epithelial Tissues

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

Epithelial-mesenchymal transition (EMT) is a phenotypic shift wherein epithelial cells lose or loosen attachments to their neighbors and assume a mesenchymal-like morphology. EMT drives a variety of developmental processes, but may also be adopted by tumor cells during neoplastic progression. EMT is regulated by both biochemical and physical signals from the microenvironment, including mechanical stress, which is increasingly recognized to play a major role in development and disease progression. Biological systems generate, transmit and concentrate mechanical stress into spatial patterns; these gradients in mechanical stress may serve to spatially pattern developmental and pathologic EMTs. Here we review how epithelial tissues generate and respond to mechanical stress gradients, and highlight the mechanisms by which mechanical stress regulates and patterns EMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

FAK:

Focal adhesion kinase

MET:

Mesenchymal-epithelial transition

MLC:

Myosin light chain

MLCK:

Myosin light chain kinase

MMP:

Matrix metalloproteinase

MRTF:

Myocardin-related transcription factor

SRF:

Serum response factor

ROCK:

Rho-associated kinase

ROS:

Reactive oxygen species

TGFβ:

Transforming growth factor-beta

2D:

Two-dimensional

3D:

Three-dimensional

References

  1. Hay ED (1995) An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154:8–20

    Article  CAS  Google Scholar 

  2. Nieto MA (2001) The early steps of neural crest development. Mech Dev 105:27–35

    Article  PubMed  CAS  Google Scholar 

  3. Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120:1351–1383

    Article  PubMed  CAS  Google Scholar 

  4. Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65:5996–6000

    Article  PubMed  CAS  Google Scholar 

  5. Thompson EW, Newgreen DF, Tarin D (2005) Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res 65:5991–5995

    Article  PubMed  CAS  Google Scholar 

  6. Kang Y, Massague J (2004) Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118:277–279

    Article  PubMed  CAS  Google Scholar 

  7. Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA (2004) Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18:1131–1143

    Article  PubMed  CAS  Google Scholar 

  8. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  PubMed  CAS  Google Scholar 

  9. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci USA 102:11594–11599

    Article  PubMed  CAS  Google Scholar 

  10. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  PubMed  CAS  Google Scholar 

  11. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  PubMed  CAS  Google Scholar 

  12. Gomez EW, Chen QK, Gjorevski N, Nelson CM (2010) Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J Cell Biochem 110:44–51

    PubMed  CAS  Google Scholar 

  13. Nelson CM, Khauv D, Bissell MJ, Radisky DC (2008) Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells. J Cell Biochem 105:25–33

    Article  PubMed  CAS  Google Scholar 

  14. Adams DS, Keller R, Koehl MAR (1990) The mechanics of notochord elongation, straightening and stiffening in the embryo of xenopus-laevis. Development 110:115–130

    PubMed  CAS  Google Scholar 

  15. Keller R, Jansa S (1992) Xenopus gastrulation without a blastocoele roof. Dev Dyn 195:162–176

    Article  PubMed  CAS  Google Scholar 

  16. Kiehart DP, Galbraith CG, Edwards KA, Rickoll WL, Montague RA (2000) Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol 149:471–490

    Article  PubMed  CAS  Google Scholar 

  17. Hutson MS, Tokutake Y, Chang MS, Bloor JW, Venakides S, Kiehart DP, Edwards GS (2003) Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145–149

    Article  PubMed  CAS  Google Scholar 

  18. Toyama Y, Peralta XG, Wells AR, Kiehart DP, Edwards GS (2008) Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321:1683–1686

    Article  PubMed  CAS  Google Scholar 

  19. Desprat N, Supatto W, Pouille PA, Beaurepaire E, Farge E (2008) Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell 15:470–477

    Article  PubMed  CAS  Google Scholar 

  20. Farge E (2003) Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13:1365–1377

    Article  PubMed  CAS  Google Scholar 

  21. Moore KA, Polte T, Huang S, Shi B, Alsberg E, Sunday ME, Ingber DE (2005) Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn 232:268–281

    Article  PubMed  CAS  Google Scholar 

  22. Michael L, Sweeney DE, Davies JA (2005) A role for microfilament-based contraction in branching morphogenesis of the ureteric bud. Kidney Int 68:2010–2018

    Article  PubMed  CAS  Google Scholar 

  23. Gjorevski N, Nelson CM (2010) Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol 2:424–434

    Article  CAS  Google Scholar 

  24. Stull MA, Pai V, Vomachka AJ, Marshall AM, Jacob GA, Horseman ND (2007) Mammary gland homeostasis employs serotonergic regulation of epithelial tight junctions. Proc Natl Acad Sci USA 104:16708–16713

    Article  PubMed  CAS  Google Scholar 

  25. Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81:682–687

    Article  PubMed  CAS  Google Scholar 

  26. Croft DR, Sahai E, Mavria G, Li SX, Tsai J, Lee WMF, Marshall CJ, Olson MF (2004) Conditional ROCK activation in vivo induces tumor cell dissemination and angiogenesis. Cancer Res 64:8994–9001

    Article  PubMed  CAS  Google Scholar 

  27. Akiri G, Sabo E, Dafni H, Vadasz Z, Kartvelishvily Y, Gan N, Kessler O, Cohen T, Resnick M, Neeman M, Neufeld G (2003) Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res 63:1657–1666

    PubMed  CAS  Google Scholar 

  28. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, Yamauchi M, Gasser DL, Weaver VM (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906

    Article  PubMed  CAS  Google Scholar 

  29. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  PubMed  CAS  Google Scholar 

  30. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890

    Article  PubMed  CAS  Google Scholar 

  31. Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437

    Article  PubMed  CAS  Google Scholar 

  32. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  33. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  PubMed  CAS  Google Scholar 

  34. Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119:1417–1419

    Article  PubMed  CAS  Google Scholar 

  35. Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24:5764–5774

    Article  PubMed  CAS  Google Scholar 

  36. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16:1987–2002

    Article  PubMed  CAS  Google Scholar 

  37. Zavadil J, Cermak L, Soto-Nieves N, Bottinger EP (2004) Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J 23:1155–1165

    Article  PubMed  CAS  Google Scholar 

  38. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  PubMed  CAS  Google Scholar 

  39. Yang YC, Piek E, Zavadil J, Liang D, Xie D, Heyer J, Pavlidis P, Kucherlapati R, Roberts AB, Bottinger EP (2003) Hierarchical model of gene regulation by transforming growth factor beta. Proc Natl Acad Sci USA 100:10269–10274

    Article  PubMed  CAS  Google Scholar 

  40. Nieto MA (2002) The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155–166

    Article  PubMed  CAS  Google Scholar 

  41. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  PubMed  CAS  Google Scholar 

  42. Hemavathy K, Guru SC, Harris J, Chen JD, Ip YT (2000) Human Slug is a repressor that localizes to sites of active transcription. Mol Cell Biol 20:5087–5095

    Article  PubMed  CAS  Google Scholar 

  43. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116:499–511

    Article  PubMed  CAS  Google Scholar 

  44. Hajra KM, Chen DY, Fearon ER (2002) The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613–1618

    PubMed  CAS  Google Scholar 

  45. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  PubMed  CAS  Google Scholar 

  46. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36

    PubMed  CAS  Google Scholar 

  47. Fukata M, Kaibuchi K (2001) Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nat Rev Mol Cell Biol 2:887–897

    Article  PubMed  CAS  Google Scholar 

  48. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, Leake D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127

    Article  PubMed  CAS  Google Scholar 

  49. Harris AK, Wild P, Stopak D (1980) Silicone-rubber substrata—new wrinkle in the study of cell locomotion. Science 208:177–179

    Article  PubMed  CAS  Google Scholar 

  50. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76:2307–2316

    Article  PubMed  CAS  Google Scholar 

  51. Pelham RJ, Wang YL (1999) High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell 10:935–945

    PubMed  CAS  Google Scholar 

  52. Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA 100:1484–1489

    Article  PubMed  CAS  Google Scholar 

  53. ChrzanowskaWodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415

    Article  CAS  Google Scholar 

  54. Landsverk ML, Epstein HF (2005) Genetic analysis of myosin II assembly and organization in model organisms. Cell Mol Life Sci 62:2270–2282

    Article  PubMed  CAS  Google Scholar 

  55. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem 271:20246–20249

    Article  PubMed  CAS  Google Scholar 

  56. Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, Narumiya S (1997) p160(ROCK), a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 404:118–124

    Article  PubMed  CAS  Google Scholar 

  57. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248

    Article  PubMed  CAS  Google Scholar 

  58. Chen CS (2008) Mechanotransduction—a field pulling together? J Cell Sci 121:3285–3292

    Article  PubMed  CAS  Google Scholar 

  59. Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159:695–705

    Article  PubMed  CAS  Google Scholar 

  60. Wozniak MA, Desai R, Solski PA, Der CJ, Keely PJ (2003) ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 163:583–595

    Article  PubMed  CAS  Google Scholar 

  61. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesions—transmembrane junctions between the extracellular-matrix and the cytoskeleton. Annu Rev Cell Biol 4:487–525

    Article  PubMed  CAS  Google Scholar 

  62. Miyamoto S, Akiyama SK, Yamada KM (1995) Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267:883–885

    Article  PubMed  CAS  Google Scholar 

  63. Reinhart-King CA, Dembo M, Hammer DA (2008) Cell-cell mechanical communication through compliant substrates. Biophys J 95:6044–6051

    Article  PubMed  CAS  Google Scholar 

  64. McNeill H, Ryan TA, Smith SJ, Nelson WJ (1993) Spatial and temporal dissection of immediate and early events following cadherin-mediated epithelial cell adhesion. J Cell Biol 120:1217–1226

    Article  PubMed  CAS  Google Scholar 

  65. Adams CL, Nelson WJ (1998) Cytomechanics of cadherin-mediated cell-cell adhesion. Curr Opin Cell Biol 10:572–577

    Article  PubMed  CAS  Google Scholar 

  66. Dudek SM, Garcia JG (2001) Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 91:1487–1500

    PubMed  CAS  Google Scholar 

  67. Beloussov LV, Dorfman JG, Cherdantzev VG (1975) Mechanical stresses and morphological patterns in amphibian embryos. J Embryol Exp Morphol 34:559–574

    PubMed  CAS  Google Scholar 

  68. Ruiz SA, Chen CS (2008) Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26:2921–2927

    Article  PubMed  Google Scholar 

  69. Tang D, Mehta D, Gunst SJ (1999) Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle. Am J Physiol 276:C250–C258

    PubMed  CAS  Google Scholar 

  70. Yano Y, Geibel J, Sumpio BE (1996) Tyrosine phosphorylation of pp 125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am J Physiol 271:C635–C649

    PubMed  CAS  Google Scholar 

  71. Wang HB, Dembo M, Hanks SK, Wang YL (2001) Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA 98:11295–11300

    Article  PubMed  CAS  Google Scholar 

  72. Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, Tsien RY, Chien S (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045

    Article  PubMed  CAS  Google Scholar 

  73. Schlaepfer DD, Mitra SK (2004) Multiple connections link FAK to cell motility and invasion. Curr Opin Genet Dev 14:92–101

    Article  PubMed  CAS  Google Scholar 

  74. von Wichert G, Krndija D, Schmid H, Haerter G, Adler G, Seufferlein T, Sheetz MP (2008) Focal adhesion kinase mediates defects in the force-dependent reinforcement of initial integrin-cytoskeleton linkages in metastatic colon cancer cell lines. Eur J Cell Biol 87:1–16

    Article  CAS  Google Scholar 

  75. Lim Y, Lim ST, Tomar A, Gardel M, Bernard-Trifilo JA, Chen XL, Uryu SA, Canete-Soler R, Zhai J, Lin H, Schlaepfer WW, Nalbant P, Bokoch G, Ilic D, Waterman-Storer C, Schlaepfer DD (2008) PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J Cell Biol 180:187–203

    Article  PubMed  CAS  Google Scholar 

  76. Pirone DM, Liu WF, Ruiz SA, Gao L, Raghavan S, Lemmon CA, Romer LH, Chen CS (2006) An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling. J Cell Biol 174:277–288

    Article  PubMed  CAS  Google Scholar 

  77. Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    Article  PubMed  CAS  Google Scholar 

  78. Sukharev S, Corey DP (2004) Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 2004:re4

  79. Baneyx G, Baugh L, Vogel V (2002) Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci USA 99:5139–5143

    Article  PubMed  CAS  Google Scholar 

  80. Starr DA, Han M (2003) ANChors away: an actin based mechanism of nuclear positioning. J Cell Sci 116:211–216

    Article  PubMed  CAS  Google Scholar 

  81. Zastrow MS, Vlcek S, Wilson KL (2004) Proteins that bind A-type lamins: integrating isolated clues. J Cell Sci 117:979–987

    Article  PubMed  CAS  Google Scholar 

  82. Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM (2001) Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 114:4485–4498

    PubMed  CAS  Google Scholar 

  83. Elberg G, Chen L, Elberg D, Chan MD, Logan CJ, Turman MA (2008) MKL1 mediates TGF-beta1-induced alpha-smooth muscle actin expression in human renal epithelial cells. Am J Physiol Renal Physiol 294:F1116–F1128

    Article  PubMed  CAS  Google Scholar 

  84. Morita T, Mayanagi T, Sobue K (2007) Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. J Cell Biol 179:1027–1042

    Article  PubMed  CAS  Google Scholar 

  85. Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16:588–596

    Article  PubMed  CAS  Google Scholar 

  86. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353–365

    Article  PubMed  CAS  Google Scholar 

  87. Miralles F, Posern G, Zaromytidou AI, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342

    Article  PubMed  CAS  Google Scholar 

  88. Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316:1749–1752

    Article  PubMed  CAS  Google Scholar 

  89. Rosenblatt J, Raff MC, Cramer LP (2001) An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol 11:1847–1857

    Article  PubMed  CAS  Google Scholar 

  90. Somogyi K, Rorth P (2004) Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration. Dev Cell 7:85–93

    Article  PubMed  CAS  Google Scholar 

  91. Connelly JT, Gautrot JE, Trappmann B, Tan DW, Donati G, Huck WT, Watt FM (2010) Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol 12:711–718

    Article  PubMed  CAS  Google Scholar 

  92. Mouilleron S, Langer CA, Guettler S, McDonald NQ, Treisman R (2011) Structure of a pentavalent G-Actin*MRTF-A complex reveals how G-Actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Sci Signal 4:ra40

    Google Scholar 

  93. Masszi A, Speight P, Charbonney E, Lodyga M, Nakano H, Szaszi K, Kapus A (2010) Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3. J Cell Biol 188:383–399

    Article  PubMed  CAS  Google Scholar 

  94. Masszi A, Kapus A (2011) Smaddening complexity: the role of smad3 in epithelial-myofibroblast transition. Cells Tissues Organs 193:41–52

    Article  PubMed  CAS  Google Scholar 

  95. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634

    Article  PubMed  CAS  Google Scholar 

  96. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15:117–134

    Article  PubMed  Google Scholar 

  97. O’Brien LE, Zegers MM, Mostov KE (2002) Opinion: building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol 3:531–537

    Article  PubMed  CAS  Google Scholar 

  98. Nelson CM, Vanduijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300

    Article  PubMed  CAS  Google Scholar 

  99. Lee K, Gjorevski N, Boghaert E, Radisky DC, Nelson CM (2011) Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis. EMBO J

  100. Arnoux V, Come C, Kusewitt D, Hudson L, Savagner P (2005) Cutaneous wound reepithelialization: a partial and reversible EMT. In: Savagner P (ed) Rise and fall of epithelial phenotype: concepts of epithelial-mesenchymal transition. Springer, Berlin, pp 111–134

    Google Scholar 

  101. Higton DI, James DW (1964) The force of contraction of full-thickness wounds of rabbit skin. Br J Surg 51:462–466

    Article  PubMed  CAS  Google Scholar 

  102. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    Article  PubMed  CAS  Google Scholar 

  103. Tomasek JJ, McRae J, Owens GK, Haaksma CJ (2005) Regulation of alpha-smooth muscle actin expression in granulation tissue myofibroblasts is dependent on the intronic CArG element and the transforming growth factor-beta1 control element. Am J Pathol 166:1343–1351

    Article  PubMed  CAS  Google Scholar 

  104. Oft M, Heider KH, Beug H (1998) TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8:1243–1252

    Article  PubMed  CAS  Google Scholar 

  105. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T (2001) Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA 98:10356–10361

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work from the authors’ laboratory was supported in part by the National Institutes of Health (GM083997 and CA128660), the David & Lucile Packard Foundation, the Alfred P. Sloan Foundation, and Susan G. Komen for the Cure. C.M.N. holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. E.B. was supported by a Predoctoral Fellowship from the New Jersey Commission on Cancer Research.

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste M. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gjorevski, N., Boghaert, E. & Nelson, C.M. Regulation of Epithelial-Mesenchymal Transition by Transmission of Mechanical Stress through Epithelial Tissues. Cancer Microenvironment 5, 29–38 (2012). https://doi.org/10.1007/s12307-011-0076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0076-5

Keywords

Navigation