Skip to main content
Log in

Cerebral blood flow and metabolism associated with cerebral microbleeds in small vessel disease

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Cerebral microbleeds (CMBs), probably reflecting microangiopathy, have not yet sufficiently been examined in association with cerebral blood flow (CBF) and metabolism. We investigated the relationships between CMBs, and CBF and metabolism in symptomatic small vessel disease.

Methods

We enrolled 22 patients with symptomatic small vessel disease without severe stenosis (>50 %) in major cerebral arteries. Volumes of white matter lesions (WMLs) and number of CMBs were assessed on images of fluid-attenuated inversion recovery and gradient-echo T2*-weighted magnetic resonance imaging, respectively. Patients were divided into two groups according to the median number of CMBs (group I <5, n = 10; group II ≥5, n = 12). Parametric images of CBF, cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction and cerebral blood volume were estimated using positron emission tomography and 15O-labeled gases. The functional values in the cortex–subcortex, basal ganglia, and centrum semiovale were compared between the two groups.

Results

Volumes of WMLs of group II were larger than those of group I (median: 38.4; range: 25.1–91.5 mL vs. median: 11.3; range: 4.2–73.4 mL, p = 0.01). In the centrum semiovale, the mean CBF of group II was significantly lower than that of group I (12.6 ± 2.6 vs. 15.6 ± 3.3 mL/100 g/min, p = 0.04). In the other regions, there were no significant differences in either CBF or CMRO2 between the two groups.

Conclusions

Our study indicated that increases in the number of CMBs with larger volumes of WMLs were associated with cerebral ischemia in the deep white matter in patients with symptomatic small vessel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Roob G, Schmidt R, Kapeller P, Lechner A, Hartung HP, Fazekas F. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology. 1999;52:991–4.

    Article  CAS  PubMed  Google Scholar 

  2. Jeerakathil T, Wolf PA, Beiser A, Hald JK, Au R, Kase CS, et al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke. 2004;35:1831–5.

    Article  PubMed  Google Scholar 

  3. Tanaka A, Ueno Y, Nakayama Y, Takano K, Takebayashi S. Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas. Stroke. 1999;30:1637–42.

    Article  CAS  PubMed  Google Scholar 

  4. Cordonnier C. Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain. 2007;130:1988–2003.

    Article  PubMed  Google Scholar 

  5. Kato H, Izumiyama M, Izumiyama K, Takahashi A, Itoyama Y. Silent cerebral microbleeds on T2*-weighted MRI: correlation with stroke subtype, stroke recurrence, and leukoaraiosis. Stroke. 2002;33:1536–40.

    Article  PubMed  Google Scholar 

  6. Fan YH, Mok VC, Lam WW, Hui AC, Wong KS. Cerebral microbleeds and white matter changes in patients hospitalized with lacunar infarcts. J Neurol. 2004;251:537–41.

    Article  PubMed  Google Scholar 

  7. Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Jolles J, Koudstaal PJ, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain. 2005;128:2034–41.

    Article  PubMed  Google Scholar 

  8. Werring DJ, Frazer DW, Coward LJ, Losseff NA, Watt H, Cipolotti L, et al. Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI. Brain. 2004;127:2265–75.

    Article  PubMed  Google Scholar 

  9. Poels MM, Ikram MA, van der Lugt A, Hofman A, Niessen WJ, Krestin GP, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology. 2012;78:326–33.

    Article  CAS  PubMed  Google Scholar 

  10. Qiu C, Cotch MF, Sigurdsson S, Jonsson PV, Jonsdottir MK, Sveinbjrnsdottir S, et al. Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik Study. Neurology. 2010;75:2221–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patel B, Lawrence AJ, Chung AW, Rich P, Mackinnon AD, Morris RG, et al. Cerebral microbleeds and cognition in patients with symptomatic small vessel disease. Stroke. 2013;44:356–61.

    Article  PubMed  Google Scholar 

  12. Yakushiji Y, Yokota C, Yamada N, Kuroda Y, Minematsu K. Clinical characteristics by topographical distribution of brain microbleeds, with a particular emphasis on diffuse microbleeds. J Stroke Cerebrovasc Dis. 2011;20:214–21.

    Article  PubMed  Google Scholar 

  13. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology. 2008;70:1208–14.

    Article  CAS  PubMed  Google Scholar 

  14. Kim KW, Lee DY, Jhoo JH, Youn JC, Suh YJ, Jun YH, et al. Diagnostic accuracy of mini-mental status examination and revised hasegawa dementia scale for Alzheimer’s disease. Dement Geriatr Cogn Disord. 2005;19:324–30.

    Article  CAS  PubMed  Google Scholar 

  15. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–44.

    Article  CAS  PubMed  Google Scholar 

  16. Nezu T, Yokota C, Uehara T, Yamauchi M, Fukushima K, Toyoda K, et al. Preserved acetazolamide reactivity in lacunar patients with severe white-matter lesions: 15O-labeled gas and H2O positron emission tomography studies. J Cereb Blood Flow Metab. 2012;32:844–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hori Y, Hirano Y, Koshino K, Moriguchi T, Iguchi S, Yamamoto A, et al. Validity of using a 3-dimensional PET scanner during inhalation of 15O-labeled oxygen for quantitative assessment of regional metabolic rate of oxygen in man. Phys Med Biol. 2014;59:5593–609.

    Article  CAS  PubMed  Google Scholar 

  18. Kudomi N, Choi E, Yamamoto S, Watabe H, Kim K, Shidahara M, et al. Development of a GSO detector assembly for a continuous blood sampling system. IEEE Trans Nucl Sci. 2003;50:70–3.

    Article  CAS  Google Scholar 

  19. Kudomi N, Hayashi T, Teramoto N, Watabe H, Kawachi N, Ohta Y, et al. Rapid quantitative measurement of CMRO(2) and CBF by dual administration of (15)O-labeled oxygen and water during a single PET scan-a validation study and error analysis in anesthetized monkeys. J Cereb Blood Flow Metab. 2005;25:1209–24.

    Article  PubMed  Google Scholar 

  20. Kudomi N, Watabe H, Hayashi T, Iida H. Separation of input function for rapid measurement of quantitative CMRO2 and CBF in a single PET scan with a dual tracer administration method. Phys Med Biol. 2007;52:1893–908.

    Article  PubMed  Google Scholar 

  21. Yamada S, Saiki M, Satow T, Fukuda A, Ito M, Minami S, et al. Periventricular and deep white matter leukoaraiosis have a closer association with cerebral microbleeds than age. Eur J Neurol. 2012;19:98–104.

    Article  CAS  PubMed  Google Scholar 

  22. Gao Z, Wang W, Wang Z, Zhao X, Shang Y, Guo Y, et al. Cerebral microbleeds are associated with deep white matter hyperintensities, but only in hypertensive patients. PLoS One. 2014;9:e91637.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schreiber S, Bueche CZ, Garz C, Kropf S, Angenstein F, Goldschmidt J, et al. The pathologic cascade of cerebrovascular lesions in SHRSP: is erythrocyte accumulation an early phase? J Cereb Blood Flow Metab. 2012;32:278–90.

    Article  CAS  PubMed  Google Scholar 

  24. Conijn MM, Hoogduin JM, van der Graaf Y, Hendrikse J, Luijten PR, Geerlings MI. Microbleeds, lacunar infarcts, white matter lesions and cerebrovascular reactivity—a 7 T study. Neuroimage. 2012;59:950–6.

    Article  PubMed  Google Scholar 

  25. Gregg NM, Kim AE, Gurol ME, Lopez OL, Aizenstein HJ, Price JC, et al. Incidental cerebral cerebral microbleeds and cerebral blood flow in elderly individuals. JAMA Neurol. 2015;72:1021–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-relatedmicrobleeds. AJNR Am J Neuroradiol. 1999;20:637–42.

    CAS  PubMed  Google Scholar 

  27. Imaizumi T, Horita Y, Hashimoto Y, Niwa J. Dotlike hemosiderin spots on T2*-weighted magnetic resonance imaging as a predictor of stroke recurrence: a prospective study. J Neurosurg. 2004;101:915–20.

    Article  PubMed  Google Scholar 

  28. Stehling C, Wersching H, Kloska SP, Kirchhof P, Ring J, Nassenstein I, et al. Detection of asymptomatic cerebral microbleeds: a comparative study at 1.5 and 3.0 T. Acad Radiol. 2008;15:895–900.

    Article  PubMed  Google Scholar 

  29. Nandigam RN, Viswanathan A, Delgado P, Skehan ME, Smith EE, Rosand J, et al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol. 2009;30:338–43.

    Article  CAS  PubMed  Google Scholar 

  30. von Falkenhausen M, Meyer C, Lutterbey G, Morakkabati N, Walter O, Gieseke J, et al. Intra-individual comparison of image contrast in SPIO-enhanced liver MRI at 1.5T and 3.0T. Eur Radiol. 2007;17:1256–61.

    Article  Google Scholar 

  31. Levin CS. Primer on molecular imaging technology. Eur J Nucl Med Mol Imaging. 2005;32(Suppl 2):S325–45.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant for Japan-Finland (Tekes/AF) Research Cooperative Program, as part of the FY 2013 Strategic International Research Cooperative Program from Japan Agency for Medical Research and Development. We thank Dr. Naomi Morita (Department of Radiology, National Cerebral and Cardiovascular Center) for her technical supports. This study was supported by a Grant for Japan-Finland (Tekes/AF) Research Cooperative Program, as part of the FY 2013 Strategic International Research Cooperative Program from Japan Agency for Medical Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Yokota.

Ethics declarations

Conflict of interest

Hidehiro Iida receives a research grant from the Nihon Medi-Physics (Tokyo, Japan) and has a patent under review for 15O-oxygen synthesis system and 15O-oxygen inhalation face mask. No other potential conflict of interest relevant to this article was reported.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, T., Yokota, C., Koshino, K. et al. Cerebral blood flow and metabolism associated with cerebral microbleeds in small vessel disease. Ann Nucl Med 30, 494–500 (2016). https://doi.org/10.1007/s12149-016-1086-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-016-1086-7

Keywords

Navigation