Skip to main content

Advertisement

Log in

The Role of SORL1 in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Genetic variation in SORL1 gene, also known as LR11, has been identified to associate with Alzheimer’s disease (AD) through replicated genetic studies. As a type I transmembrane protein, SORL1 is composed of several distinct domains and belongs to both the low-density lipoprotein receptor (LDLR) family and the vacuolar protein sorting 10 (VPS10) domain receptor family. The level of SORL1 was found to be decreased in the AD brain which positively correlated with β-amyloid (Aβ) accumulation. Emerging data suggests that SORL1 contributes to AD through various pathways, including emerging as a central regulator of the trafficking and processing of amyloid precursor protein (APP), involvement in Aβ destruction, and interaction with ApoE and tau protein. Primarily, SORL1 interacts with distinct sets of cytosolic adaptors for anterograde and retrograde movement of APP between the trans-Golgi network (TGN) and early endosomes, thereby restricting the delivery of the precursor to endocytic compartments that favor amyloidogenic breakdown. In this article, we review recent epidemiological and genetical findings of SORL1 that related with AD and speculate the possible roles of SORL1 in the progression of this disease. Finally, given the potential contributions of SORL1 to AD pathogenesis, targeting SORL1 might present novel opportunities for AD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jiang T, Yu JT, Tian Y, Tan L (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer Res 10(8):852–867

    Article  CAS  PubMed  Google Scholar 

  2. Scherzer CR, Offe K, Gearing M, Rees HD, Fang G, Heilman CJ, Schaller C, Bujo H, Levey AI, Lah JJ (2004) Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch Neurol 61(8):1200–1205. doi:10.1001/archneur.61.8.1200

    PubMed  Google Scholar 

  3. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CA, Breiderhoff T, Jansen P, Wu X, Bales KR, Cappai R, Masters CL, Gliemann J, Mufson EJ, Hyman BT, Paul SM, Nykjaer A, Willnow TE (2005) Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci U S A 102(38):13461–13466. doi:10.1073/pnas.0503689102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Caglayan S, Takagi-Niidome S, Liao F, Carlo AS, Schmidt V, Burgert T, Kitago Y, Fuchtbauer EM, Fuchtbauer A, Holtzman DM, Takagi J, Willnow TE (2014) Lysosomal sorting of amyloid-beta by the SORLA receptor is impaired by a familial Alzheimer’s disease mutation. Science translational medicine 6 (223):223ra220. doi:10.1126/scitranslmed.3007747

  5. Yamazaki H, Bujo H, Kusunoki J, Seimiya K, Kanaki T, Morisaki N, Schneider WJ, Saito Y (1996) Elements of neural adhesion molecules and a yeast vacuolar protein sorting receptor are present in a novel mammalian low density lipoprotein receptor family member. J Biol Chem 271(40):24761–24768

    Article  CAS  PubMed  Google Scholar 

  6. Jacobsen L, Madsen P, Moestrup SK, Lund AH, Tommerup N, Nykjaer A, Sottrup-Jensen L, Gliemann J, Petersen CM (1996) Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein. J Biol Chem 271(49):31379–31383

    Article  CAS  PubMed  Google Scholar 

  7. Motoi Y, Aizawa T, Haga S, Nakamura S, Namba Y, Ikeda K (1999) Neuronal localization of a novel mosaic apolipoprotein E receptor, LR11, in rat and human brain. Brain Res 833(2):209–215

    Article  CAS  PubMed  Google Scholar 

  8. Marcusson EG, Horazdovsky BF, Cereghino JL, Gharakhanian E, Emr SD (1994) The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77(4):579–586

    Article  CAS  PubMed  Google Scholar 

  9. Meng Y, Lee JH, Cheng R, St George-Hyslop P, Mayeux R, Farrer LA (2007) Association between SORL1 and Alzheimer’s disease in a genome-wide study. Neuroreport 18(17):1761–1764. doi:10.1097/WNR.0b013e3282f13e7a

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Miyashita A, Koike A, Jun G, Wang LS, Takahashi S, Matsubara E, Kawarabayashi T, Shoji M, Tomita N, Arai H, Asada T, Harigaya Y, Ikeda M, Amari M, Hanyu H, Higuchi S, Ikeuchi T, Nishizawa M, Suga M, Kawase Y, Akatsu H, Kosaka K, Yamamoto T, Imagawa M, Hamaguchi T, Yamada M, Moriaha T, Takeda M, Takao T, Nakata K, Fujisawa Y, Sasaki K, Watanabe K, Nakashima K, Urakami K, Ooya T, Takahashi M, Yuzuriha T, Serikawa K, Yoshimoto S, Nakagawa R, Kim JW, Ki CS, Won HH, Na DL, Seo SW, Mook-Jung I, Alzheimer Disease Genetics C, St George-Hyslop P, Mayeux R, Haines JL, Pericak-Vance MA, Yoshida M, Nishida N, Tokunaga K, Yamamoto K, Tsuji S, Kanazawa I, Ihara Y, Schellenberg GD, Farrer LA, Kuwano R (2013) SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. PLoS ONE 8(4):e58618. doi:10.1371/journal.pone.0058618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Wen Y, Miyashita A, Kitamura N, Tsukie T, Saito Y, Hatsuta H, Murayama S, Kakita A, Takahashi H, Akatsu H, Yamamoto T, Kosaka K, Yamaguchi H, Akazawa K, Ihara Y, Kuwano R (2013) SORL1 is genetically associated with neuropathologically characterized late-onset Alzheimer’s disease. J Alzheimer’s Dis JAD 35(2):387–394. doi:10.3233/JAD-122395

    CAS  Google Scholar 

  12. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, Katayama T, Baldwin CT, Cheng R, Hasegawa H, Chen F, Shibata N, Lunetta KL, Pardossi-Piquard R, Bohm C, Wakutani Y, Cupples LA, Cuenco KT, Green RC, Pinessi L, Rainero I, Sorbi S, Bruni A, Duara R, Friedland RP, Inzelberg R, Hampe W, Bujo H, Song YQ, Andersen OM, Willnow TE, Graff-Radford N, Petersen RC, Dickson D, Der SD, Fraser PE, Schmitt-Ulms G, Younkin S, Mayeux R, Farrer LA, St George-Hyslop P (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 39(2):168–177. doi:10.1038/ng1943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lee JH, Cheng R, Schupf N, Manly J, Lantigua R, Stern Y, Rogaeva E, Wakutani Y, Farrer L, St George-Hyslop P, Mayeux R (2007) The association between genetic variants in SORL1 and Alzheimer disease in an urban, multiethnic, community-based cohort. Arch Neurol 64(4):501–506. doi:10.1001/archneur.64.4.501

    Article  PubMed Central  PubMed  Google Scholar 

  14. Li Y, Rowland C, Catanese J, Morris J, Lovestone S, O’Donovan MC, Goate A, Owen M, Williams J, Grupe A (2008) SORL1 variants and risk of late-onset Alzheimer’s disease. Neurobiol Dis 29(2):293–296. doi:10.1016/j.nbd.2007.09.001

    Article  PubMed Central  PubMed  Google Scholar 

  15. Ning M, Yang Y, Zhang Z, Chen Z, Zhao T, Zhang D, Zhou D, Xu J, Liu Z, Wang Y, Liu Y, Zhao X, Li W, Li S, He L (2010) Amyloid-beta-related genes SORL1 and ACE are genetically associated with risk for late-onset Alzheimer disease in the Chinese population. Alzheimer Dis Assoc Disord 24(4):390–396. doi:10.1097/WAD.0b013e3181e6a575

    Article  CAS  PubMed  Google Scholar 

  16. Kolsch H, Jessen F, Wiltfang J, Lewczuk P, Dichgans M, Kornhuber J, Frolich L, Heuser I, Peters O, Schulz JB, Schwab SG, Maier W (2008) Influence of SORL1 gene variants: association with CSF amyloid-beta products in probable Alzheimer’s disease. Neurosci Lett 440(1):68–71. doi:10.1016/j.neulet.2008.05.049

    Article  PubMed  Google Scholar 

  17. Cellini E, Tedde A, Bagnoli S, Pradella S, Piacentini S, Sorbi S, Nacmias B (2009) Implication of sex and SORL1 variants in Italian patients with Alzheimer disease. Arch Neurol 66(10):1260–1266. doi:10.1001/archneurol.2009.101

    PubMed  Google Scholar 

  18. Liu F, Ikram MA, Janssens AC, Schuur M, de Koning I, Isaacs A, Struchalin M, Uitterlinden AG, den Dunnen JT, Sleegers K, Bettens K, Van Broeckhoven C, van Swieten J, Hofman A, Oostra BA, Aulchenko YS, Breteler MM, van Duijn CM (2009) A study of the SORL1 gene in Alzheimer’s disease and cognitive function. J Alzheimer’s Dis JAD 18(1):51–64. doi:10.3233/JAD-2009-1137

    Google Scholar 

  19. Tan EK, Lee J, Chen CP, Teo YY, Zhao Y, Lee WL (2009) SORL1 haplotypes modulate risk of Alzheimer’s disease in Chinese. Neurobiol Aging 30(7):1048–1051. doi:10.1016/j.neurobiolaging.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  20. Olgiati P, Politis A, Albani D, Rodilossi S, Polito L, Zisaki A, Piperi C, Liappas I, Stamouli E, Mailis A, Batelli S, Forloni G, Marsano A, Balestri M, Soldatos CR, De Ronchi D, Kalofoutis A, Serretti A (2013) Effects of SORL1 gene on Alzheimer’s disease. Focus on gender, neuropsychiatric symptoms and pro-inflammatory cytokines. Curr Alzheimer Res 10(2):154–164

    Article  CAS  PubMed  Google Scholar 

  21. Reitz C, Cheng R, Rogaeva E, Lee JH, Tokuhiro S, Zou F, Bettens K, Sleegers K, Tan EK, Kimura R, Shibata N, Arai H, Kamboh MI, Prince JA, Maier W, Riemenschneider M, Owen M, Harold D, Hollingworth P, Cellini E, Sorbi S, Nacmias B, Takeda M, Pericak-Vance MA, Haines JL, Younkin S, Williams J, van Broeckhoven C, Farrer LA, St George-Hyslop PH, Mayeux R, Genetic, Environmental Risk in Alzheimer Disease C (2011) Meta-analysis of the association between variants in SORL1 and Alzheimer disease. Arch Neurol 68(1):99–106. doi:10.1001/archneurol.2010.346

    Article  PubMed Central  PubMed  Google Scholar 

  22. Kimura R, Yamamoto M, Morihara T, Akatsu H, Kudo T, Kamino K, Takeda M (2009) SORL1 is genetically associated with Alzheimer disease in a Japanese population. Neurosci Lett 461(2):177–180. doi:10.1016/j.neulet.2009.06.014

    Article  CAS  PubMed  Google Scholar 

  23. Shibata N, Ohnuma T, Baba H, Higashi S, Nishioka K, Arai H (2008) Genetic association between SORL1 polymorphisms and Alzheimer’s disease in a Japanese population. Dement Geriatr Cogn Disord 26(2):161–164. doi:10.1159/000149821

    CAS  PubMed  Google Scholar 

  24. Jin C, Liu X, Zhang F, Wu Y, Yuan J, Zhu J, Zhang F, Wang G, Cheng Z (2013) An updated meta-analysis of the association between SORL1 variants and the risk for sporadic Alzheimer’s disease. J Alzheimer’s Dis JAD 37(2):429–437. doi:10.3233/JAD-130533

    CAS  Google Scholar 

  25. Grear KE, Ling IF, Simpson JF, Furman JL, Simmons CR, Peterson SL, Schmitt FA, Markesbery WR, Liu Q, Crook JE, Younkin SG, Bu G, Estus S (2009) Expression of SORL1 and a novel SORL1 splice variant in normal and Alzheimer’s disease brain. Mol Neurodegener 4:46. doi:10.1186/1750-1326-4-46

    Article  PubMed Central  PubMed  Google Scholar 

  26. Group MS, TC K, Lunetta KL, Baldwin CT, McKee AC, Guo J, Cupples LA, Green RC, St George-Hyslop PH, Chui H, DeCarli C, Farrer LA (2008) Association of distinct variants in SORL1 with cerebrovascular and neurodegenerative changes related to Alzheimer disease. Arch Neurol 65(12):1640–1648. doi:10.1001/archneur.65.12.1640

    Article  Google Scholar 

  27. Kolsch H, Jessen F, Wiltfang J, Lewczuk P, Dichgans M, Teipel SJ, Kornhuber J, Frolich L, Heuser I, Peters O, Wiese B, Kaduszkiewicz H, van den Bussche H, Hull M, Kurz A, Ruther E, Henn FA, Maier W (2009) Association of SORL1 gene variants with Alzheimer’s disease. Brain Res 1264:1–6. doi:10.1016/j.brainres.2009.01.044

    Article  PubMed  Google Scholar 

  28. Alexopoulos P, Guo LH, Kratzer M, Westerteicher C, Kurz A, Perneczky R (2011) Impact of SORL1 single nucleotide polymorphisms on Alzheimer’s disease cerebrospinal fluid markers. Dement Geriatr Cogn Disord 32(3):164–170. doi:10.1159/000332017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Dodson SE, Gearing M, Lippa CF, Montine TJ, Levey AI, Lah JJ (2006) LR11/SorLA expression is reduced in sporadic Alzheimer disease but not in familial Alzheimer disease. J Neuropathol Exp Neurol 65(9):866–872. doi:10.1097/01.jnen.0000228205.19915.20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sager KL, Wuu J, Leurgans SE, Rees HD, Gearing M, Mufson EJ, Levey AI, Lah JJ (2007) Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. Ann Neurol 62(6):640–647. doi:10.1002/ana.21190

    Article  PubMed Central  PubMed  Google Scholar 

  31. Ma QL, Galasko DR, Ringman JM, Vinters HV, Edland SD, Pomakian J, Ubeda OJ, Rosario ER, Teter B, Frautschy SA, Cole GM (2009) Reduction of SorLA/LR11, a sorting protein limiting beta-amyloid production, in Alzheimer disease cerebrospinal fluid. Arch Neurol 66(4):448–457. doi:10.1001/archneurol.2009.22

    PubMed Central  PubMed  Google Scholar 

  32. Ikeuchi T, Hirayama S, Miida T, Fukamachi I, Tokutake T, Ebinuma H, Takubo K, Kaneko H, Kasuga K, Kakita A, Takahashi H, Bujo H, Saito Y, Nishizawa M (2010) Increased levels of soluble LR11 in cerebrospinal fluid of patients with Alzheimer disease. Dement Geriatr Cogn Disord 30(1):28–32. doi:10.1159/000315539

    Article  CAS  PubMed  Google Scholar 

  33. Tsolakidou A, Alexopoulos P, Guo LH, Grimmer T, Westerteicher C, Kratzer M, Jiang M, Bujo H, Roselli F, Leante MR, Livrea P, Kurz A, Perneczky R (2013) Beta-site amyloid precursor protein-cleaving enzyme 1 activity is related to cerebrospinal fluid concentrations of sortilin-related receptor with A-type repeats, soluble amyloid precursor protein, and tau. Alzheimer’s Dement J Alzheimer’s Assoc 9(4):386–391. doi:10.1016/j.jalz.2012.01.015

    Article  Google Scholar 

  34. Willnow TE, Andersen OM (2013) Sorting receptor SORLA—a trafficking path to avoid Alzheimer disease. J Cell Sci 126(Pt 13):2751–2760. doi:10.1242/jcs.125393

    Article  CAS  PubMed  Google Scholar 

  35. Herskowitz JH, Offe K, Deshpande A, Kahn RA, Levey AI, Lah JJ (2012) GGA1-mediated endocytic traffic of LR11/SorLA alters APP intracellular distribution and amyloid-beta production. Mol Biol Cell 23(14):2645–2657. doi:10.1091/mbc.E12-01-0014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Fjorback AW, Seaman M, Gustafsen C, Mehmedbasic A, Gokool S, Wu C, Militz D, Schmidt V, Madsen P, Nyengaard JR, Willnow TE, Christensen EI, Mobley WB, Nykjaer A, Andersen OM (2012) Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci Off J Soc Neurosci 32(4):1467–1480. doi:10.1523/JNEUROSCI.2272-11.2012

    Article  CAS  Google Scholar 

  37. Offe K, Dodson SE, Shoemaker JT, Fritz JJ, Gearing M, Levey AI, Lah JJ (2006) The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. J Neurosci Off J Soc Neurosci 26(5):1596–1603. doi:10.1523/JNEUROSCI.4946-05.2006

    Article  CAS  Google Scholar 

  38. Schmidt V, Baum K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, Wiesner B, Petersen CM, Nykjaer A, Wolf J, Wolkenhauer O, Willnow TE (2012) Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer’s disease. EMBO J 31(1):187–200. doi:10.1038/emboj.2011.352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Schmidt V, Sporbert A, Rohe M, Reimer T, Rehm A, Andersen OM, Willnow TE (2007) SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J Biol Chem 282(45):32956–32964. doi:10.1074/jbc.M705073200

    Article  CAS  PubMed  Google Scholar 

  40. Nielsen MS, Gustafsen C, Madsen P, Nyengaard JR, Hermey G, Bakke O, Mari M, Schu P, Pohlmann R, Dennes A, Petersen CM (2007) Sorting by the cytoplasmic domain of the amyloid precursor protein binding receptor SorLA. Mol Cell Biol 27(19):6842–6851. doi:10.1128/MCB.00815-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Santosa C, Rasche S, Barakat A, Bellingham SA, Ho M, Tan J, Hill AF, Masters CL, McLean C, Evin G (2011) Decreased expression of GGA3 protein in Alzheimer’s disease frontal cortex and increased co-distribution of BACE with the amyloid precursor protein. Neurobiol Dis 43(1):176–183. doi:10.1016/j.nbd.2011.03.009

    Article  CAS  PubMed  Google Scholar 

  42. Tesco G, Koh YH, Kang EL, Cameron AN, Das S, Sena-Esteves M, Hiltunen M, Yang SH, Zhong Z, Shen Y, Simpkins JW, Tanzi RE (2007) Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron 54(5):721–737. doi:10.1016/j.neuron.2007.05.012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Scott GK, Fei H, Thomas L, Medigeshi GR, Thomas G (2006) A PACS-1, GGA3 and CK2 complex regulates CI-MPR trafficking. EMBO J 25(19):4423–4435. doi:10.1038/sj.emboj.7601336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Seaman MN (2007) Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J Cell Sci 120(Pt 14):2378–2389. doi:10.1242/jcs.009654

    Article  CAS  PubMed  Google Scholar 

  45. Taira K, Bujo H, Hirayama S, Yamazaki H, Kanaki T, Takahashi K, Ishii I, Miida T, Schneider WJ, Saito Y (2001) LR11, a mosaic LDL receptor family member, mediates the uptake of ApoE-rich lipoproteins in vitro. Arterioscler Thromb Vasc Biol 21(9):1501–1506

    Article  CAS  PubMed  Google Scholar 

  46. Izzo G, Forlenza OV, Santos B, Bertolucci PH, Ojopi EB, Gattaz WF, Kerr DS (2013) Single-nucleotide polymorphisms of GSK3B, GAB2 and SORL1 in late-onset Alzheimer’s disease: interactions with the APOE genotype. Clinics 68(2):277–280

    Article  PubMed Central  PubMed  Google Scholar 

  47. Xue X, Zhang M, Lin Y, Xu E, Jia J (2014) Association between the SORL1 rs2070045 polymorphism and late-onset Alzheimer’s disease: interaction with the ApoE genotype in the Chinese Han population. Neurosci Lett 559:94–98. doi:10.1016/j.neulet.2013.11.042

    Article  CAS  PubMed  Google Scholar 

  48. Elias-Sonnenschein LS, Helisalmi S, Natunen T, Hall A, Paajanen T, Herukka SK, Laitinen M, Remes AM, Koivisto AM, Mattila KM, Lehtimaki T, Verhey FR, Visser PJ, Soininen H, Hiltunen M (2013) Genetic loci associated with Alzheimer’s disease and cerebrospinal fluid biomarkers in a Finnish case-control cohort. PLoS ONE 8(4):e59676. doi:10.1371/journal.pone.0059676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Guo LH, Westerteicher C, Wang XH, Kratzer M, Tsolakidou A, Jiang M, Grimmer T, Laws SM, Alexopoulos P, Bujo H, Kurz A, Perneczky R (2012) SORL1 genetic variants and cerebrospinal fluid biomarkers of Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 262(6):529–534. doi:10.1007/s00406-012-0295-x

    Article  PubMed  Google Scholar 

  50. Capsoni S, Carlo AS, Vignone D, Amato G, Criscuolo C, Willnow TE, Cattaneo A (2013) SorLA deficiency dissects amyloid pathology from tau and cholinergic neurodegeneration in a mouse model of Alzheimer’s disease. J Alzheimer’s Dis JAD 33(2):357–371. doi:10.3233/JAD-2012-121399

    CAS  Google Scholar 

  51. Ma QL, Teter B, Ubeda OJ, Morihara T, Dhoot D, Nyby MD, Tuck ML, Frautschy SA, Cole GM (2007) Omega-3 fatty acid docosahexaenoic acid increases SorLA/LR11, a sorting protein with reduced expression in sporadic Alzheimer’s disease (AD): relevance to AD prevention. J Neurosci Off J Soc Neurosci 27(52):14299–14307. doi:10.1523/JNEUROSCI.3593-07.2007

    Article  CAS  Google Scholar 

  52. Vedin I, Cederholm T, Freund-Levi Y, Basun H, Garlind A, Irving GF, Eriksdotter-Jonhagen M, Wahlund LO, Dahlman I, Palmblad J (2012) Effects of DHA-rich n-3 fatty acid supplementation on gene expression in blood mononuclear leukocytes: the OmegAD study. PLoS ONE 7(4):e35425. doi:10.1371/journal.pone.0035425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Rohe M, Synowitz M, Glass R, Paul SM, Nykjaer A, Willnow TE (2009) Brain-derived neurotrophic factor reduces amyloidogenic processing through control of SORLA gene expression. J Neurosci Off J Soc Neurosci 29(49):15472–15478. doi:10.1523/JNEUROSCI.3960-09.2009

    Article  CAS  Google Scholar 

  54. Furuya TK, da Silva PN, Payao SL, Rasmussen LT, de Labio RW, Bertolucci PH, Braga IL, Chen ES, Turecki G, Mechawar N, Mill J, de Arruda Cardoso Smith M (2012) SORL1 and SIRT1 mRNA expression and promoter methylation levels in aging and Alzheimer’s Disease. Neurochem Int 61(7):973–975. doi:10.1016/j.neuint.2012.07.014

    Article  CAS  PubMed  Google Scholar 

  55. Bohm C, Seibel NM, Henkel B, Steiner H, Haass C, Hampe W (2006) SorLA signaling by regulated intramembrane proteolysis. J Biol Chem 281(21):14547–14553. doi:10.1074/jbc.M601660200

    Article  PubMed  Google Scholar 

  56. Nyborg AC, Ladd TB, Zwizinski CW, Lah JJ, Golde TE (2006) Sortilin, SorCS1b, and SorLA Vps10p sorting receptors, are novel gamma-secretase substrates. Mol Neurodegener 1:3. doi:10.1186/1750-1326-1-3

    Article  PubMed Central  PubMed  Google Scholar 

  57. Lane RF, Gatson JW, Small SA, Ehrlich ME, Gandy S (2010) Protein kinase C and rho activated coiled coil protein kinase 2 (ROCK2) modulate Alzheimer’s APP metabolism and phosphorylation of the Vps10-domain protein, SorL1. Mol Neurodegener 5:62. doi:10.1186/1750-1326-5-62

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Herskowitz JH, Seyfried NT, Gearing M, Kahn RA, Peng J, Levey AI, Lah JJ (2011) Rho kinase II phosphorylation of the lipoprotein receptor LR11/SORLA alters amyloid-beta production. J Biol Chem 286(8):6117–6127. doi:10.1074/jbc.M110.167239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Leuchtenberger S, Kummer MP, Kukar T, Czirr E, Teusch N, Sagi SA, Berdeaux R, Pietrzik CU, Ladd TB, Golde TE, Koo EH, Weggen S (2006) Inhibitors of Rho-kinase modulate amyloid-beta (Abeta) secretion but lack selectivity for Abeta42. J Neurochem 96(2):355–365. doi:10.1111/j.1471-4159.2005.03553.x

    Article  CAS  PubMed  Google Scholar 

  60. Cramer JF, Gustafsen C, Behrens MA, Oliveira CL, Pedersen JS, Madsen P, Petersen CM, Thirup SS (2010) GGA autoinhibition revisited. Traffic 11(2):259–273. doi:10.1111/j.1600-0854.2009.01017.x

    Article  CAS  PubMed  Google Scholar 

  61. Ciarlo E, Massone S, Penna I, Nizzari M, Gigoni A, Dieci G, Russo C, Florio T, Cancedda R, Pagano A (2013) An intronic ncRNA-dependent regulation of SORL1 expression affecting Abeta formation is upregulated in post-mortem Alzheimer’s disease brain samples. Dis Model Mech 6(2):424–433. doi:10.1242/dmm.009761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Natural Science Foundation of China (81000544, 81171209, 81371406), the Shandong Provincial Natural Science Foundation, China (ZR2010HQ004, ZR2011HZ001), and the Shandong Provincial Outstanding Medical Academic Professional Program.

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, RH., Yu, JT. & Tan, L. The Role of SORL1 in Alzheimer’s Disease. Mol Neurobiol 51, 909–918 (2015). https://doi.org/10.1007/s12035-014-8742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8742-5

Keywords

Navigation