Skip to main content

Advertisement

Log in

Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Poly(ADP-ribosyl)ation is an immediate cellular repair response to DNA damage and is catalyzed primarily by poly(ADP-ribose)polymerase-1 (PARP1), which is the most abundant of the 18 different PARP isoforms and accounts for more than 90% of the catalytic activity of PARP in the cell nucleus. Upon detection of a DNA strand break, PARP1 binds to the DNA, cleaves nicotinamide adenine dinucleotide between nicotinamide and ribose and then modifies the DNA nuclear acceptor proteins by formation of a bond between the protein and the ADP-ribose residue. This generates ribosyl–ribosyl linkages that act as a signal for other DNA-repairing enzymes and DNA base repair. Extensive DNA breakage in cells results in excessive activation of PARP with resultant depletion of the cellular stores of nicotinamide adenine dinucleotide (NAD+) which slows the rate of glycolysis, mitochondrial electron transport, and ultimately ATP formation in these cells. This paper focuses on PARP in DNA repair in atherosclerosis, acute myocardial infarction/reperfusion injury, and congestive heart failure and the role of PARP inhibitors in combating the effects of excessive PARP activation in these diseases. Free oxygen radicals and nitrogen radicals in arteries contribute to disruption of the vascular endothelial glycocalyx, which increase the permeability of the endothelium to inflammatory cells and also low-density lipoproteins and the accumulation of lipid in the vascular intima. Mild inflammation and DNA damage within vascular cells promote PARP1 activation and DNA repair. Moderate DNA damage induces caspase-dependent PARP cleavage and vascular cell apoptosis. Severe DNA damage due to vascular inflammation causes excessive activation of PARP1. This causes endothelial cell depletion of NAD+ and ATP, downregulation of atheroprotective SIRT1, necrotic cell death, and ultimately atherosclerotic plaque disruption. Inhibition of PARP decreases vascular endothelial cell adhesion P-selectin and ICAM-1 molecules, inflammatory cells, pro-death caspase-3, and c-Jun N-terminal kinase (JNK) activation and upregulates prosurvival extracellular signal-regulated kinases and AKT, which decrease vascular cell apoptosis and necrosis and limit atherosclerosis and plaque disruption. In myocardial infarction with coronary occlusion then reperfusion, which occurs with coronary angioplasty or thrombolytic therapy, reperfusion injury occurs in as many as 31% of patients and is caused by inflammatory cells, free oxygen and nitrogen radicals, the rapid transcriptional activation of inflammatory cytokines, and the activation of PARP1. Inhibition of PARP attenuates neutrophil infiltration and inflammatory cytokine expression in the reperfused myocardium and preserves myocardial NAD+ and ATP. In addition, PARP inhibition increases the activation of myocyte survival enzymes protein kinase B (Akt) and protein kinase C epsilon (PKCε), and decreases the activity of myocardial ventricular remodeling enzymes PKCα/β, PKCζ/λ, and PKCδ. As a consequence, cardiomyocyte and vascular endothelial cell necrosis is decreased and myocardial contractility is preserved. In heart failure and circulatory shock in animal models, PARP inhibition significantly attenuates decreases in left ventricular systolic pressure, ventricular contractility and relaxation, stroke volume, and increases survival by limiting or preventing upregulation of adhesion molecules, proinflammatory cytokines, myocardial mononuclear cell infiltration, and PKCα/β and PKC λ/ζ. In this manner, PARP inhibition partially restores the myocardial concentrations of NAD+, limits ventricular remodeling and fibrosis, and prevents significant decreases in myocardial contractility. Based primarily on investigations in preclinical models of atherosclerosis, myocardial infarction, and heart failure, PARP inhibition appears to be beneficial in limiting or inhibiting cardiovascular dysfunction. These studies indicate that investigations of acute and chronic PARP inhibition are warranted in patients with atherosclerotic coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [2, 9, 10]

Fig. 2

Adapted from [11]

Fig. 3

Adapted from [2, 60]

Similar content being viewed by others

References

  1. Virág, L. (2013). 50 Years of poly(ADP-ribosyl)ation. Molecular Aspects of Medicine, 34(6), 1043–1045. https://doi.org/10.1016/j.mam.2013.05.002.

    Article  CAS  PubMed  Google Scholar 

  2. Xu, S., Bai, P., Little, P., & Liu, P. (2014). Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: From molecular mechanisms to therapeutic implications. Medicinal Research Reviews, 34, 644–675. https://doi.org/10.1002/med.21300.

    Article  CAS  PubMed  Google Scholar 

  3. Burkle, A., Schreiber, V., Dantzer, F., & Oliver, F. (2000). Biological significance of poly(ADP-ribosylation) reactions: Molecular and genetic approaches. In G. de Murcia & S. Shall (Eds.), From DNA damage and stress signaling to cell death: Poly ADP-ribosylation reactions (pp. 80–124). Oxford: Oxford University Press.

    Google Scholar 

  4. Andrabi, S. A., Dawson, T. M., & Dawson, V. L. (2008). Mitochondrial and nuclear cross talk in cell death: Parthanatos. Annals of the New York Academy of Sciences, 1147, 233–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Amé, J. C., Spenlehauer, C., & de Murcia, G. (2004). The PARP superfamily. BioEssays, 26(8), 882–893.

    Article  CAS  PubMed  Google Scholar 

  6. De Vos, M., Schreiber, V., & Dantzer, F. (2012). The diverse roles and clinical relevance of PARPs in DNA damage repair: Current state of the art. Biochemical Pharmacology. https://doi.org/10.1016/j.bcp.2012.03.018.

    Article  PubMed  Google Scholar 

  7. Krishnakumar, R., & Kraus, W. L. (2010). The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets. Molecular Cell, 39(1), 8–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kraus, W. L., & Hottiger, M. O. (2013). PARP-1 and gene regulation: Progress and puzzles. Molecular Aspects of Medicine, 34(6), 1109–1123.

    Article  CAS  PubMed  Google Scholar 

  9. Luo, X., & Kraus, W. L. (2012). On PAR with PARP: Cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes & Development, 26(5), 417–432.

    Article  CAS  Google Scholar 

  10. Diefenbach, J., & Bürkle, A. (2005). Introduction to poly(ADP-ribose) metabolism. Cellular and Molecular Life Sciences, 62(7–8), 721–730.

    Article  CAS  PubMed  Google Scholar 

  11. D’Amours, D., Desnoyers, S., D’Silva, I., & Poirier, G. G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochemical Journal, 342(Pt 2), 249–268.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gagne, J. P., Pic, E., Isabelle, M., Krietsch, J., Ethier, C., Paquet, E., et al. (2012). Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. Nucleic Acids Research, 40(16), 7788–7805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christmann, M., Tomicic, M. T., Roos, W. P., & Kaina, B. (2003). Mechanisms of human DNA repair: An update. Toxicology, 193(1–2), 3–34.

    Article  CAS  PubMed  Google Scholar 

  14. Cuzzocrea, S. (2005). Shock, inflammation and PARP. Pharmacological Research, 52(1), 72–82.

    Article  CAS  PubMed  Google Scholar 

  15. Virág, L., Robaszkiewicz, A., Rodriguez-Vargas, J. M., & Oliver, F. J. (2013). Poly(ADP-ribose) signaling in cell death. Molecular Aspects of Medicine, 34(6), 1153–1167.

    Article  CAS  PubMed  Google Scholar 

  16. Pacher, P., & Szabó, C. (2007). Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: The therapeutic potential of PARP inhibitors. Cardiovascular Drug Reviews, 25(3), 235–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, S. W., Wang, H., Poitras, M., Coombs, C., Bowers, W. J., Federoff, H. J., et al. (2002). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science, 297(5579), 259–263.

    Article  CAS  PubMed  Google Scholar 

  18. Yu, S. W., Andrabi, S., Wang, H., Kim, N. S., Poirier, G. G., Dawson, T. M., et al. (2006). Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18314–18319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dawson, V. L., & Dawson, T. M. (2004). Deadly conversations: Nuclear-mitochondrial cross-talk. Journal of Bioenergetics and Biomembranes, 36(4), 287–294.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, M., Zsengellér, Z., Xiao, C. Y., & Szabó, C. (2004). Mitochondrial-to-nuclear translocation of apoptosis-inducing factor in cardiac myocytes during oxidant stress: Potential role of poly(ADP-ribose) polymerase-1. Cardiovascular Research, 63(4), 682–688.

    Article  CAS  PubMed  Google Scholar 

  21. Hassa, P. O., Haenni, S. S., Buerki, C., Meier, N. I., Lane, W. S., Owen, H., et al. (2005). Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. Journal of Biological Chemistry, 280(49), 40450–40464.

    Article  CAS  PubMed  Google Scholar 

  22. Oliver, F. J., Ménissier-de Murcia, J., Nacci, C., Decker, P., Andriantsitohaina, R., Muller, S., et al. (1999). Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO Journal, 18(16), 4446–4454.

    Article  CAS  PubMed  Google Scholar 

  23. Ha, H. C., Hester, L. D., & Snyder, S. H. (2002). Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3270–3275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kameoka, M., Ota, K., Tetsuka, T., Tanaka, Y., Itaya, A., Okamoto, T., et al. (2000). Evidence for regulation of NF-kappaB by poly(ADP-ribose) polymerase. Biochemical Journal, 346(Pt 3), 641–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. von Lukowicz, T., Hassa, P. O., Lohmann, C., Boren, J., Braunersreuther, V., Mach, F., et al. (2008). PARP1 is required for adhesion molecule expression in atherogenesis. Cardiovascular Research, 78(1), 158–166.

    Article  CAS  Google Scholar 

  26. Curtin, N. J., & Szabo, C. (2013). Therapeutic applications of PARP inhibitors: Anticancer therapy and beyond. Molecular Aspects of Medicine. https://doi.org/10.1016/j.mam.2013.01.006.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mukhopadhyay, P., Horváth, B., Kechrid, M., Tanchian, G., Rajesh, M., Naura, A. S., et al. (2011). Poly(ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radical Biology and Medicine, 51(9), 1774–1788.

    Article  CAS  PubMed  Google Scholar 

  28. Zingarelli, B., Hake, P. W., Burroughs, T. J., Piraino, G., O’Connor, M., & Denenberg, A. (2004). Activator protein-1 signalling pathway and apoptosis are modulated by poly(ADP-ribose) polymerase-1 in experimental colitis. Immunology, 113(4), 509–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zingarelli, B., Hake, P. W., O’Connor, M., Denenberg, A., Wong, H. R., Kong, S., et al. (2004). Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: Role of poly(ADP-ribose) polymerase-1. American Journal of Physiology Heart and Circulatory Physiology. https://doi.org/10.1152/ajpheart.00953.2003.

    Article  PubMed  Google Scholar 

  30. Yeung, F., Hoberg, J. E., Ramsey, C. S., Keller, M. D., Jones, D. R., Frye, R. A., et al. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO Journal. https://doi.org/10.1038/sj.emboj.7600244.

    Article  PubMed  Google Scholar 

  31. Kauppinen, A., Suuronen, T., Ojala, J., Kaarniranta, K., & Salminen, A. (2013). Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cellular Signalling. https://doi.org/10.1016/j.cellsig.2013.06.007.

    Article  PubMed  Google Scholar 

  32. Zhang, J. (2003). Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? BioEssays. https://doi.org/10.1002/bies.10317.

    Article  PubMed  Google Scholar 

  33. Pillai, J. B., Isbatan, A., Imai, S., & Gupta, M. P. (2005). Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M506162200.

    Article  PubMed  Google Scholar 

  34. Pillai, J. B., Russell, H. M., Raman, J., Jeevanandam, V., & Gupta, M. P. (2005). Increased expression of poly(ADP-ribose) polymerase-1 contributes to caspase-independent myocyte cell death during heart failure. American Journal of Physiology Heart and Circulatory Physiology. https://doi.org/10.1016/j.cellsig.2013.06.007.

    Article  PubMed  Google Scholar 

  35. Virág, L., & Szabó, C. (2002). The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacological Reviews, 54, 375–429.

    Article  PubMed  Google Scholar 

  36. Song, Z., Chen, D., Du, B., & Ji, X. (2013). Poly (ADP-ribose) polymerase inhibitor reduces heart ischaemia/reperfusion injury via inflammation and Akt signaling in rats. Chinese Medical Journal, 126, 1913–1917.

    CAS  PubMed  Google Scholar 

  37. Booz, G. W. (2007). PARP inhibitors and heart failure–translational medicine caught in the act. Congestive Heart Failure, 13, 105–112.

    Article  CAS  PubMed  Google Scholar 

  38. Wahlberg, E., Karlberg, T., Kouznetsova, E., Markova, N., Macchiarulo, A., Thorsell, A. G., et al. (2012). Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nature Biotechnology. https://doi.org/10.1038/nbt.2121.

    Article  PubMed  Google Scholar 

  39. Milam, K. M., Thomas, G. H., & Cleaver, J. E. (1986). Disturbances in DNA precursor metabolism associated with exposure to an inhibitor of poly(ADP-ribose) synthetase. Experimental Cell Research, 165, 260–268.

    Article  CAS  PubMed  Google Scholar 

  40. Yu, X., Cheng, X., Xie, J. J., Liao, M. Y., Yao, R., Chen, Y., et al. (2009). Poly (ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by hyper-homocysteinemia in rats. Cardiovascular Drugs and Therapy. https://doi.org/10.1007/s10557-008-6146-3.

    Article  PubMed  Google Scholar 

  41. Zingarelli, B., Cuzzocrea, S., Zsengellér, Z., Salzman, A. L., & Szabó, C. (1997). Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovascular Research, 36, 205–215.

    Article  CAS  PubMed  Google Scholar 

  42. Hans, C. P., Zerfaoui, M., Naura, A. S., Catling, A., & Boulares, A. H. (2008). Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability. Cardiovascular Research. https://doi.org/10.1093/cvr/cvn018.

    Article  PubMed  Google Scholar 

  43. Hans, C. P., Zerfaoui, M., Naura, A. S., Troxclair, D., Strong, J. P., Matrougui, K., et al. (2009). Thieno[2,3-c]isoquinolin-5-one, a potent poly(ADP-ribose) polymerase inhibitor, promotes atherosclerotic plaque regression in high-fat diet-fed apolipoprotein E-deficient mice: Effects on inflammatory markers and lipid content. Journal of Pharmacology and Experimental Therapeutics. https://doi.org/10.1124/jpet.108.145938.

    Article  PubMed  Google Scholar 

  44. Szabó, C., Pacher, P., Zsengellér, Z., Vaslin, A., Komjáti, K., Benkö, R., et al. (2004). Angiotensin II-mediated endothelial dysfunction: Role of poly(ADP-ribose) polymerase activation. Molecular Medicine, 10, 28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Soriano, F. G., Pacher, P., Mabley, J., Liaudet, L., & Szabó, C. (2001). Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circulation Research, 89, 684–691.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, C., Yang, J., & Jennings, L. K. (2004). Attenuation of neointima formation through the inhibition of DNA repair enzyme PARP-1 in balloon-injured rat carotid artery. American Journal of Physiology Heart and Circulatory Physiology. https://doi.org/10.1152/ajpheart.00162.2004.

    Article  PubMed  Google Scholar 

  47. Choi, S. K., Galán, M., Kassan, M., Partyka, M., Trebak, M., & Matrougui, K. (2012). Poly(ADP-ribose)polymerase 1 inhibition improves coronary arteriole function in type 2 diabetes mellitus. Hypertension. https://doi.org/10.1161/HYPERTENSIONAHA.111.190140.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Song, Z. F., Ji, X. P., Li, X. X., Wang, S. J., Wang, S. H., & Zhang, Y. (2008). Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translocation. Journal of Cellular and Molecular Medicine. https://doi.org/10.1111/j.1582-4934.2008.00183.x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Morrow, D. A., Brickman, C. M., Murphy, S. A., Baran, K., Krakover, R., Dauerman, H., et al. (2009). A randomized, placebo-controlled trial to evaluate the tolerability, safety, pharmacokinetics, and pharmacodynamics of a potent inhibitor of poly(ADP-ribose) polymerase (INO-1001) in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: Results of the TIMI 37 trial. Journal of Thrombosis and Thrombolysis. https://doi.org/10.1007/s11239-008-0230-1.

    Article  PubMed  Google Scholar 

  50. Ueda, K., Oka, J., Naruniya, S., Miyakawa, N., & Hayaishi, O. (1972). Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer. Biochemical and Biophysical Research Communications, 46, 516–523.

    Article  CAS  PubMed  Google Scholar 

  51. Erbel, C., Achenbach, J., Akhavanpoor, M., Dengler, T. J., Lasitschka, F., Gleissner, C. A., et al. (2011). PARP inhibition in atherosclerosis and its effects on dendritic cells, T cells and auto-antibody levels. European Journal of Medical Research, 16, 367–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beller, C. J., Radovits, T., Kosse, J., Gerö, D., Szabó, C., & Szabó, G. (2006). Activation of the peroxynitrite-poly(adenosine diphosphate-ribose) polymerase pathway during neointima proliferation: A new target to prevent restenosis after endarterectomy. Journal of Vascular Surgery. https://doi.org/10.1016/j.jvs.2005.11.021.

    Article  PubMed  Google Scholar 

  53. Pawlowska, M., Gajda, M., Pyka-Fosciak, G., Toton-Zuranska, J., Niepsuj, A., Kus, K., et al. (2011). The effect of doxycycline on atherogenesis in apoE-knockout mice. Journal of Physiology and Pharmacology, 62, 247–250.

    CAS  PubMed  Google Scholar 

  54. Bendeck, M. P., Conte, M., Zhang, M., Nili, N., Strauss, B. H., & Farwell, S. M. (2002). Doxycycline modulates smooth muscle cell growth, migration, and matrix remodeling after arterial injury. American Journal of Pathology. https://doi.org/10.1016/S0002-9440(10)64929-2.

    Article  PubMed  Google Scholar 

  55. Brown, D. L., Desai, K. K., Vakili, B. A., Nouneh, C., Lee, H. M., & Golub, L. M. (2004). Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial. Arteriosclerosis, Thrombosis, and Vascular Biology. https://doi.org/10.1161/01.ATV.0000121571.78696.dc.

    Article  PubMed  Google Scholar 

  56. Hans, C. P., Feng, Y., Naura, A. S., Troxclair, D., Zerfaoui, M., Siddiqui, D., et al. (2011). Opposing roles of PARP-1 in MMP-9 and TIMP-2 expression and mast cell degranulation in dyslipidemic dilated cardiomyopathy. Cardiovascular Pathology. https://doi.org/10.1016/j.carpath.2010.03.007.

    Article  PubMed  Google Scholar 

  57. Hans, C. P., Feng, Y., Naura, A. S., Zerfaoui, M., Rezk, B. M., Xia, H., et al. (2009). Protective effects of PARP-1 knockout on dyslipidemia-induced autonomic and vascular dysfunction in ApoE mice: Effects on eNOS and oxidative stress. PLoS ONE. https://doi.org/10.1371/journal.pone.0007430.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Turko, I. V., & Murad, F. (2002). Protein nitration in cardiovascular diseases. Pharmacological Reviews, 54, 619–634.

    Article  CAS  PubMed  Google Scholar 

  59. Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and atherosclerosis. Circulation, 105, 1135–1143.

    Article  CAS  Google Scholar 

  60. Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews. https://doi.org/10.1152/physrev.00029.2006.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Oumouna-Benachour, K., Hans, C. P., Suzuki, Y., Naura, A., Datta, R., Belmadani, S., et al. (2007). Poly(ADP-ribose) polymerase inhibition reduces atherosclerotic plaque size and promotes factors of plaque stability in apolipoprotein E-deficient mice: Effects on macrophage recruitment, nuclear factor-kappaB nuclear translocation, and foam cell death. Circulation. https://doi.org/10.1161/circulationaha.106.668756.

    Article  PubMed  Google Scholar 

  62. Libby, P. (2002). Inflammation in atherosclerosis. Nature. https://doi.org/10.1038/nature01323.

    Article  PubMed  Google Scholar 

  63. Perrotta, I., Brunelli, E., Sciangula, A., Zuccalà, V., Donato, G., Tripepi, S., et al. (2009). Inducible and endothelial nitric oxide synthase expression in human atherogenesis: An immunohistochemical and ultrastructural study. Cardiovascular Pathology. https://doi.org/10.1016/j.carpath.2008.08.005.

    Article  PubMed  Google Scholar 

  64. Wang, Y. X. (2005). Cardiovascular functional phenotypes and pharmacological responses in apolipoprotein E deficient mice. Neurobiology of Aging, 26(3), 309–316.

    Article  CAS  PubMed  Google Scholar 

  65. Kawashima, S. (2004). Malfunction of vascular control in lifestyle-related diseases: Endothelial nitric oxide (NO) synthase/NO system in atherosclerosis. Journal of Pharmacological Sciences, 96(4), 411–419.

    Article  CAS  PubMed  Google Scholar 

  66. Martinet, W., Knaapen, M. W., De Meyer, G. R., Herman, A. G., & Kockx, M. M. (2002). Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation, 106(8), 927–932.

    Article  CAS  PubMed  Google Scholar 

  67. Hassa, P. O., & Hottiger, M. O. (2002). The functional role of poly(ADP-ribose) polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cellular and Molecular Life Sciences, 59(9), 1534–1553.

    Article  CAS  PubMed  Google Scholar 

  68. Carrillo, A., Monreal, Y., Ramírez, P., Marin, L., Parrilla, P., Oliver, F. J., et al. (2004). Transcription regulation of TNF-alpha-early response genes by poly(ADP-ribose) polymerase-1 in murine heart endothelial cells. Nucleic Acids Research, 32(2), 757–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zingarelli, B., Salzman, A. L., & Szabó, C. (1998). Genetic disruption of poly(ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circulation Research, 83(1), 85–94.

    Article  CAS  PubMed  Google Scholar 

  70. Xie, J. J., Yu, X., Liao, Y. H., Chen, J., Yao, R., Chen, Y., et al. (2009). Poly(ADP-Ribose) polymerase inhibition attenuates atherosclerotic plaque development in ApoE−/− mice with hyperhomocysteinemia. Journal of Atherosclerosis and Thrombosis, 16(5), 641–653.

    Article  CAS  PubMed  Google Scholar 

  71. Wei, S. J., Cheng, L., Liang, E. S., Wang, Q., Zhou, S. N., Xu, H., et al. (2017). Poly(ADP-ribose) polymerase 1 deficiency increases nitric oxide production and attenuates aortic atherogenesis through downregulation of arginase II. Clinical and Experimental Pharmacology and Physiology. https://doi.org/10.1111/1440-1681.12685.

    Article  PubMed  Google Scholar 

  72. Benkö, R., Pacher, P., Vaslin, A., Kollai, M., & Szabó, C. (2004). Restoration of the endothelial function in the aortic rings of apolipoprotein E deficient mice by pharmacological inhibition of the nuclear enzyme poly(ADP-ribose) polymerase. Life Sciences, 75(10), 1255–1261.

    Article  CAS  PubMed  Google Scholar 

  73. De Roeck, L., Vandamme, S., Everaert, B. R., Hoymans, V., Haine, S., Vandendriessche, T., et al. (2016). Adiponectin and ischemia-reperfusion injury in ST segment elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care. https://doi.org/10.1177/2048872615570770.

    Article  PubMed  Google Scholar 

  74. Ungvári, Z., Gupte, S. A., Recchia, F. A., Bátkai, S., & Pacher, P. (2005). Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Current Vascular Pharmacology, 3(3), 221–229.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yamazaki, K., Tanaka, S., Sakata, R., Miwa, S., Oriyanhan, W., Takaba, K., et al. (2013). Protective effect of cardioplegia with poly (ADP-ribose) polymerase-1 inhibitor against myocardial ischemia-reperfusion injury: In vitro study of isolated rat heart model. Journal of Enzyme Inhibition and Medicinal Chemistry. https://doi.org/10.3109/14756366.2011.642373.

    Article  PubMed  Google Scholar 

  76. Wang, M., Hu, B., Zhang, Y. L., Shen, E., & Pan, X. Q. (2016). Effects of 3-aminobenzamide on ventricular function in infarct heart assessed by quantitative tissue velocity imaging. Journal of Cardiovascular Medicine (Hagerstown). https://doi.org/10.2459/JCM.0000000000000061.

    Article  Google Scholar 

  77. Roesner, J. P., Mersmann, J., Bergt, S., Bohnenberg, K., Barthuber, C., Szabo, C., et al. (2010). Therapeutic injection of PARP inhibitor INO-1001 preserves cardiac function in porcine myocardial ischemia and reperfusion without reducing infarct size. Shock. https://doi.org/10.1097/SHK.0b013e3181c4fb08.

    Article  PubMed  Google Scholar 

  78. Faro, R., Toyoda, Y., McCully, J. D., Jagtap, P., Szabo, E., Virag, L., et al. (2002). Myocardial protection by PJ34, a novel potent poly (ADP-ribose) synthetase inhibitor. Annals of Thoracic Surgery, 73(2), 575–581.

    Article  PubMed  Google Scholar 

  79. Halmosi, R., Berente, Z., Osz, E., Toth, K., Literati-Nagy, P., & Sumegi, B. (2001). Effect of poly(ADP-ribose) polymerase inhibitors on the ischemia-reperfusion-induced oxidative cell damage and mitochondrial metabolism in Langendorff heart perfusion system. Molecular Pharmacology, 59(6), 1497–1505.

    Article  CAS  PubMed  Google Scholar 

  80. Zhou, H. Z., Swanson, R. A., Simonis, U., Ma, X., Cecchini, G., & Gray, M. O. (2006). Poly(ADP-ribose) polymerase-1 hyperactivation and impairment of mitochondrial respiratory chain complex I function in reperfused mouse hearts. American Journal of Physiology Heart and Circulatory Physiology, 291(2), H714–H723.

    Article  CAS  PubMed  Google Scholar 

  81. Fiorillo, C., Ponziani, V., Giannini, L., Cecchi, C., Celli, A., Nassi, N., et al. (2006). Protective effects of the PARP-1 inhibitor PJ34 in hypoxic-reoxygenated cardiomyoblasts. Cellular and Molecular Life Sciences, 63(24), 3061–3071.

    Article  CAS  PubMed  Google Scholar 

  82. Farivar, A. S., McCourtie, A. S., MacKinnon-Patterson, B. C., Woolley, S. M., Barnes, A. D., Chen, M., et al. (2005). Poly (ADP) ribose polymerase inhibition improves rat cardiac allograft survival. Annals of Thoracic Surgery, 80(3), 950–956.

    Article  PubMed  Google Scholar 

  83. Szabó, G., & Bährle, S. (2005). Role of nitrosative stress and poly(ADP-ribose) polymerase activation in myocardial reperfusion injury. Current Vascular Pharmacology, 3(3), 215–220.

    Article  PubMed  Google Scholar 

  84. Henning, R. J. (1989). Acute myocardial infarction. In R. J. Henning & A. Grenvik (Eds.), Critical care cardiology (pp. 333–400). New York: Churchill Livingstone.

    Google Scholar 

  85. Islam, B. U., Habib, S., Ali, S. A., & Ali, N. (2017). Role of peroxynitrite-induced activation of poly(ADP-ribose) polymerase (PARP) in circulatory shock and related pathological conditions. Cardiovascular Toxicology. https://doi.org/10.1007/s12012-016-9394-7.

    Article  PubMed  Google Scholar 

  86. Molnár, A., Tóth, A., Bagi, Z., Papp, Z., Edes, I., Vaszily, M., et al. (2006). Activation of the poly(ADP-ribose) polymerase pathway in human heart failure. Molecular Medicine, 12(7–8), 143–152.

    PubMed  PubMed Central  Google Scholar 

  87. Feng, Q., Lu, X., Jones, D. L., Shen, J., & Arnold, J. M. (2001). Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation, 104(6), 700–704.

    Article  CAS  PubMed  Google Scholar 

  88. Mihm, M. J., Coyle, C. M., Schanbacher, B. L., Weinstein, D. M., & Bauer, J. A. (2001). Peroxynitrite induced nitration and inactivation of myofibrillar creatine kinase in experimental heart failure. Cardiovascular Research, 49(4), 798–807.

    Article  CAS  PubMed  Google Scholar 

  89. Pacher, P., Vaslin, A., Benko, R., Mabley, J. G., Liaudet, L., Haskó, G., et al. (2004). A new, potent poly(ADP-ribose) polymerase inhibitor improves cardiac and vascular dysfunction associated with advanced aging. Journal of Pharmacology and Experimental Therapeutics. https://doi.org/10.1124/jpet.104.069658.

    Article  PubMed  Google Scholar 

  90. Xiao, C. Y., Chen, M., Zsengellér, Z., Li, H., Kiss, L., Kollai, M., et al. (2005). Poly(ADP-Ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. Journal of Pharmacology and Experimental Therapeutics, 312(3), 891–898.

    Article  CAS  PubMed  Google Scholar 

  91. Weinstein, D. M., Mihm, M. J., & Bauer, J. A. (2000). Cardiac peroxynitrite formation and left ventricular dysfunction following doxorubicin treatment in mice. Journal of Pharmacology and Experimental Therapeutics, 294(1), 396–401.

    CAS  PubMed  Google Scholar 

  92. Bai, P., Mabley, J. G., Liaudet, L., Virág, L., Szabó, C., & Pacher, P. (2004). Matrix metalloproteinase activation is an early event in doxorubicin-induced cardiotoxicity. Oncology Reports, 11(2), 505–508.

    CAS  PubMed  Google Scholar 

  93. Szenczi, O., Kenecsei, P., Holthuijsen, M. F., van Riel, N. A., van der Vusse, G. J., Pacher, P., et al. (2005). Poly(ADP-ribose) polymerase regulates myocardial calcium handling in doxorubicin-induced heart failure. Biochemical Pharmacology, 69(5), 725–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pacher, P., Liaudet, L., Soriano, F. G., Mabley, J. G., Szabó, E., & Szabó, C. (2002). The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes, 51(2), 514–521.

    Article  CAS  PubMed  Google Scholar 

  95. Baker, C. S., Dutka, D. P., Pagano, D., Rimoldi, O., Pitt, M., Hall, R. J., et al. (2002). Immunocytochemical evidence for inducible nitric oxide synthase and cyclooxygenase-2 expression with nitrotyrosine formation in human hibernating myocardium. Basic Research in Cardiology, 97(5), 409–415.

    Article  CAS  PubMed  Google Scholar 

  96. Narula, J., Pandey, P., Arbustini, E., Haider, N., Narula, N., Kolodgie, F. D., et al. (1999). Apoptosis in heart failure: Release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8144–8149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sorescu, D., & Griendling, K. K. (2002). Reactive oxygen species, mitochondria, and NAD(P)H oxidases in the development and progression of heart failure. Congestive Heart Failure, 8(3), 132–140.

    Article  CAS  PubMed  Google Scholar 

  98. Ferrari, R., Guardigli, G., Mele, D., Percoco, G. F., Ceconi, C., & Curello, S. (2004). Oxidative stress during myocardial ischaemia and heart failure. Current Pharmaceutical Design, 10(14), 1699–1711.

    Article  CAS  PubMed  Google Scholar 

  99. Kovacs, K., Toth, A., Deres, P., Kalai, T., Hideg, K., Gallyas, F., Jr., et al. (2006). Critical role of PI3-kinase/Akt activation in the PARP inhibitor induced heart function recovery during ischemia-reperfusion. Biochemical Pharmacology, 71(4), 441–452.

    Article  CAS  PubMed  Google Scholar 

  100. Palfi, A., Toth, A., Hanto, K., Deres, P., Szabados, E., Szereday, Z., et al. (2006). PARP inhibition prevents postinfarction myocardial remodeling and heart failure via the protein kinase C/glycogen synthase kinase-3beta pathway. Journal of Molecular and Cellular Cardiology, 41(1), 149–159.

    Article  CAS  PubMed  Google Scholar 

  101. Gurusamy, N., Watanabe, K., Ma, M., Prakash, P., Hirabayashi, K., Zhang, S., et al. (2006). Glycogen synthase kinase 3beta together with 14-3-3 protein regulates diabetic cardiomyopathy: Effect of losartan and tempol. FEBS Letters, 580(8), 1932–1940.

    Article  CAS  PubMed  Google Scholar 

  102. Henning, R. J., Sanberg, P., & Jimenez, E. (2014). Human cord blood stem cell paracrine factors activate the survival protein kinase Akt and inhibit death protein kinases JNK and p38 in injured cardiomyocytes. Cytotherapy, 16, 1158–1168. https://doi.org/10.1016/j.jcyt.2014.01.415.

    Article  CAS  PubMed  Google Scholar 

  103. Jin, H., Sanberg, P. R., & Henning, R. J. (2013). Human umbilical cord blood mononuclear cell-conditioned media inhibits hypoxic-induced apoptosis in human coronary artery endothelial cells and cardiac myocytes by activation of the survival protein Akt. Cell Transplantation, 22, 1637–1650. https://doi.org/10.3727/096368912X661427.

    Article  PubMed  Google Scholar 

  104. Soriano, F. G., Nogueira, A. C., Caldini, E. G., Lins, M. H., Teixeira, A. C., Cappi, S. B., et al. (2006). Potential role of poly(adenosine 5′-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial contractile dysfunction associated with human septic shock. Critical Care Medicine, 34(4), 1073–1079.

    Article  CAS  PubMed  Google Scholar 

  105. Szabó, C. (2007). Poly(ADP-ribose) polymerase activation and circulatory shock. Novartis Foundation Symposium, 280, 92–103. (discussion 103-7, 160-4).

    PubMed  Google Scholar 

  106. Pacher, P., Liaudet, L., Mabley, J. G., Cziráki, A., Haskó, G., & Szabó, C. (2006). Beneficial effects of a novel ultrapotent poly(ADP-ribose) polymerase inhibitor in murine models of heart failure. International Journal of Molecular Medicine, 17(2), 369–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, L., Hu, B., Gong, S., Yu, Y., Dai, H., & Yan, J. (2014). Association of poly(ADP-ribose) polymerase activity in circulating mononuclear cells with myocardial dysfunction in patients with septic shock. Chinese Medical Journal (England), 127(15), 2775–2778.

    CAS  Google Scholar 

  108. Bartha, E., Solti, I., Szabo, A., Olah, G., Magyar, K., Szabados, E., et al. (2011). Regulation of kinase cascade activation and heat shock protein expression by poly(ADP-ribose) polymerase inhibition in doxorubicin-induced heart failure. Journal of Cardiovascular Pharmacology. https://doi.org/10.1097/FJC.0b013e318225c21e.

    Article  PubMed  Google Scholar 

  109. Bartha, E., Solti, I., Kereskai, L., Lantos, J., Plozer, E., Magyar, K., et al. (2009). PARP inhibition delays transition of hypertensive cardiopathy to heart failure in spontaneously hypertensive rats. Cardiovascular Research. https://doi.org/10.1093/cvr/cvp144.

    Article  PubMed  Google Scholar 

  110. Deres, L., Bartha, E., Palfi, A., Eros, K., Riba, A., Lantos, J., et al. (2014). PARP-inhibitor treatment prevents hypertension induced cardiac remodeling by favorable modulation of heat shock proteins, Akt-1/GSK-3β and several PKC isoforms. PLoS ONE. https://doi.org/10.1371/journal.pone.0102148.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Esposito, E., & Cuzzocrea, S. (2009). Superoxide, NO, peroxynitrite and PARP in circulatory shock and inflammation. Frontiers in Bioscience (Landmark Edition), 1(14), 263–296.

    Article  Google Scholar 

  112. Henning, R. J., & Harbison, R. D. (2017). Cardio-oncology: Cardiovascular complications of cancer therapy. Future Cardiology, 13(4), 379–396.

    Article  CAS  PubMed  Google Scholar 

  113. Shelburne, N., Adhikari, B., Brell, J., Davis, M., Desvigne-Nickens, P., Freedman, A., et al. (2014). Cancer treatment-related cardiotoxicity: Current state of knowledge and future research priorities. Journal of the National Cancer Institute, 06, dju232.

    Google Scholar 

  114. Coyle, J. P. (2016). The influence of oxygen tension and glycolytic and citric acid cycle substrates in acrolein-induced cellular injury in the differentiated H9c2 cardiac cell model. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy with a concentration in Toxicology and Risk Assessment. Department of Environmental and Occupational Health College of Public Health, University of South Florida.

  115. Henning, R. J., Johnson, G., Coyle, J., & Harbison, R. (2017). Acrolein can cause cardiovascular disease: A review. Cardiovascular Toxicology, 17, 227–236.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Children’s Cardiomyopathy Foundation. The author wishes to thank Priscilla Stephenson and her library staff for their assistance with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Henning.

Additional information

Handling Editor: Dr. Kurt J. Varner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henning, R.J., Bourgeois, M. & Harbison, R.D. Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders. Cardiovasc Toxicol 18, 493–506 (2018). https://doi.org/10.1007/s12012-018-9462-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9462-2

Keywords

Navigation