Skip to main content
Log in

Functional imaging of motor recovery after stroke: Remaining challenges

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Stroke is a leading cause of disability in the United States and is likely to have an increasing impact on disability worldwide. In order to develop more effective rehabilitation techniques, it is critical to understand the mechanisms underlying the mature brain’s capacity to reorganize and restore neurologic function. Over the past decade, functional brain imaging has been a principal investigational tool in elucidating mechanisms of stroke recovery. Functional imaging studies of motor performance in patients with stroke consistently demonstrate areas of brain activation not present in healthy subjects. The role of these additional areas in recovery after stroke remains uncertain. This review discusses methodologic and theoretical issues that impact on interpreting functional imaging studies of motor recovery after stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Taylor TN, Davis PH, Torner JC, et al.: Lifetime cost of stroke in the United States. Stroke 1996, 27:1459–1466.

    PubMed  CAS  Google Scholar 

  2. Toga AW, Mazziotta JC (eds): Brain Mapping: The Methods, edn 2. New York: Academic Press; 2002.

    Google Scholar 

  3. Calautti C, Baron JC: Functional neuroimaging studies of motor recovery after stroke in adults. Stroke 2003, 34:1553–1566. Excellent comprehensive review of functional imaging studies of motor recovery after stroke.

    Article  PubMed  Google Scholar 

  4. Calautti C, Serrati C, Baron JC: Effects of age on brain activation during auditory-cued thumb-to-index opposition: a positron emission tomography study. Stroke 2001, 32:139–146.

    PubMed  CAS  Google Scholar 

  5. D’Esposito M, Zarahn E, Aguirre GK, Rypma B: The effect of normal aging on the coupling of neural activity to the bold hemodynamic response. Neuroimage 1999, 10:6–14.

    Article  PubMed  CAS  Google Scholar 

  6. Shelton FN, Reding MJ: Effect of lesion location on upper limb motor recovery after stroke. Stroke 2001, 32:107–112.

    PubMed  CAS  Google Scholar 

  7. Binkofski F, Seitz RJ, Arnold S, et al.: Thalamic metabolism and corticospinal tract integrity determine motor recovery in stroke. Ann Neurol 1996, 36:460–470.

    Article  Google Scholar 

  8. Shimizu T, Hosaki A, Hino T, et al.: Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain 2002, 125:1896–1907.

    Article  PubMed  Google Scholar 

  9. Brett M, Leff AP, Rorden C, Ashburner J: Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 2001, 14:486–500.

    Article  PubMed  CAS  Google Scholar 

  10. Ward NS, Brown MM, Thompson AJ, Frackowiak RS: Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain 2003, 126:1430–1448.

    Article  PubMed  CAS  Google Scholar 

  11. Ward NS, Brown MM, Thompson AJ, Frackowiak RS: Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 2003, 126:2476–2496. Well-designed, recent longitudinal fMRI study of motor recovery after stroke.

    Article  PubMed  CAS  Google Scholar 

  12. Powers WJ: Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991, 29:231–240.

    Article  PubMed  CAS  Google Scholar 

  13. Marshall RS, Rundek T, Sproule DM, et al.: Monitoring of cerebral vasodilatory capacity with transcranial Doppler carbon dioxide inhalation in patients with severe carotid artery disease. Stroke 2003, 34:945–949.

    Article  PubMed  Google Scholar 

  14. Bilecen D, Radu EW, Schulte AC, et al.: fMRI of the auditory cortex in patients with unilateral carotid artery stenoocclusive disease. J Magn Reson Imaging 2002, 15:621–627.

    Article  PubMed  Google Scholar 

  15. Rother J, Knab R, Hamzei F, et al.: Negative dip in BOLD fMRI is caused by blood flow-oxygen consumption uncoupling in humans. Neuroimage 2002, 15:98–102.

    Article  PubMed  Google Scholar 

  16. Wade DT: Measurement in Neurological Rehabilitation. Oxford Medical Publications. Oxford: Oxford University Press; 1994.

    Google Scholar 

  17. Cirstea MC, Levin MF: Compensatory strategies for reaching in stroke. Brain 2000, 123(pt 5):940–953.

    Article  PubMed  Google Scholar 

  18. Reinkensmeyer DJ, McKenna CA, Kahn LE, Kamper DG: Directional control of reaching is preserved following mild/ moderate stroke and stochastically constrained following severe stroke. Exp Brain Res 2002, 143:525–530.

    Article  PubMed  Google Scholar 

  19. Jezzard P, Matthews PM, Smith SM (eds): Functional MRI: An Introduction to Methods, edn 1. London: International Institute for Strategic Studies; 2001.

    Google Scholar 

  20. Seto E, Sela G, McIlroy WE, et al.: Quantifying head motion associated with motor tasks used in fMRI. Neuroimage 2001, 14:284–297. Important study of the effects of stroke on head motion during motor tasks in the MRI scanner.

    Article  PubMed  CAS  Google Scholar 

  21. Nelles G, Cramer SC, Schaechter JD, et al.: Quantitative assessment of mirror movements after stroke. Stroke 1998, 29:1182–1187.

    PubMed  CAS  Google Scholar 

  22. Kim YH, Jang SH, Chang Y, et al.: Bilateral primary sensorimotor cortex activation of post-stroke mirror movements: an fMRI study. Neuroreport 2003, 14:1329–1332.

    Article  PubMed  Google Scholar 

  23. Wittenberg GF, Bastian AJ, Dromerick AW, et al.: Mirror movements complicate interpretation of cerebral activation changes during recovery from subcortical infarction. Neurorehabil Neural Repair 2000, 14:213–221.

    PubMed  CAS  Google Scholar 

  24. Weiller C, Ramsay SC, Wise RJ, et al.: Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction. Ann Neurol 1993, 33:181–189.

    Article  PubMed  CAS  Google Scholar 

  25. Weiller C, Juptner M, Fellows S, et al.: Brain representation of active and passive movements. Neuroimage 1996, 4:105–110.

    Article  PubMed  CAS  Google Scholar 

  26. Nelles G, Spiekermann G, Jueptner M, et al.: Reorganization of sensory and motor systems in hemiplegic stroke patients. A positron emission tomography study. Stroke 1999, 30:1510–1516.

    PubMed  CAS  Google Scholar 

  27. Weiller C, Chollet F, Friston KJ, et al.: Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 1992, 31:463–472.

    Article  PubMed  CAS  Google Scholar 

  28. Cramer SC, Nelles G, Benson RR, et al.: A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997, 28:2518–2527.

    PubMed  CAS  Google Scholar 

  29. Gerardin E, Sirigu A, Lehericy S, et al.: Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex 2000, 10:1093–1104.

    Article  PubMed  CAS  Google Scholar 

  30. Johnson SH: Imagining the impossible: intact motor representations in hemiplegics. Neuroreport 2000, 11:729–732.

    Article  PubMed  CAS  Google Scholar 

  31. Johnson SH, Sprehn G, Saykin AJ: Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations. J Cogn Neurosci 2002, 14:841–852.

    Article  PubMed  Google Scholar 

  32. Chollet F, DiPiero V, Wise RJ, et al.: The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography. Ann Neurol 1991, 29:63–71.

    Article  PubMed  CAS  Google Scholar 

  33. Marshall RS, Perera GM, Lazar RM, et al.: Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke 2000, 31:656–661.

    PubMed  CAS  Google Scholar 

  34. Feydy A, Carlier R, Roby-Brami A, et al.: Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke 2002, 33:1610–1617.

    Article  PubMed  CAS  Google Scholar 

  35. Bullmore E, Suckling J, Zelaya F, et al.: Practice and difficulty evoke anatomically and pharmacologically dissociable brain activation dynamics. Cerebral Cortex 2003, 13:144–154.

    Article  PubMed  Google Scholar 

  36. Hummel F, Kirsammer R, Gerloff C: Ipsilateral cortical activation during finger sequences of increasing complexity: representation of movement difficulty or memory load? Clin Neurophysiol 2003, 114:605–613.

    Article  PubMed  Google Scholar 

  37. Loubinoux I, Carel C, Alary F, et al.: Within-session and between-session reproducibility of cerebral sensorimotor activation: a test-retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab 2001, 21:592–607.

    Article  PubMed  CAS  Google Scholar 

  38. Jantzen KJ, Steinberg FL, Kelso JA: Practice-dependent modulation of neural activity during human sensorimotor coordination: a functional magnetic resonance imaging study. Neurosci Lett 2002, 332:205–209.

    Article  PubMed  CAS  Google Scholar 

  39. Henson RN, Rugg MD: Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia 2003, 41:263–270.

    Article  PubMed  CAS  Google Scholar 

  40. Frost SB, Barbay S, Friel KM, et al.: Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol 2003, 89:3205–3214.

    Article  PubMed  CAS  Google Scholar 

  41. Johansen-Berg H, Rushworth MF, Bogdanovic MD, et al.: The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci U S A 2002, 99:14518–14523. First TMS study to show functional importance of a contralesional area, identified by fMRI, for motor recovery after stroke.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krakauer, J.W. Functional imaging of motor recovery after stroke: Remaining challenges. Curr Neurol Neurosci Rep 4, 42–46 (2004). https://doi.org/10.1007/s11910-004-0010-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-004-0010-z

Keywords

Navigation