Skip to main content

Advertisement

Log in

Update on Therapeutic Options in Lipodystrophy

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (M-E Patti, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to summarize the therapeutic approach for lipodystrophy syndromes with conventional treatment options and metreleptin therapy in detail and to point out the current investigational treatments in development.

Recent Findings

The observation of leptin deficiency in patients with lipodystrophy and the potential of leptin replacement to rescue metabolic abnormalities in animal models of lipodystrophy were followed by the first clinical study of leptin therapy in patients with severe lipodystrophy. This and several other long-term studies demonstrated important benefits of recombinant human leptin (metreleptin) to treat metabolic abnormalities of lipodystrophy. These studies ultimately led to the recent FDA approval of metreleptin for the treatment of generalized lipodystrophy and EMA approval for both generalized and partial lipodystrophy. Additional research efforts in progress focus on novel treatment options, predominantly for patients with partial lipodystrophy.

Summary

Current treatment of generalized lipodystrophy includes metreleptin replacement as an adjunct to diet and standard treatment approach for metabolic consequences of lipodystrophy. Beyond metreleptin, a number of different compounds and treatment modalities are being studied for the treatment of partial lipodystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chan JL, Oral EA. Clinical classification and treatment of congenital and acquired lipodystrophy. Endocr Pract. 2010;16(2):310–23. https://doi.org/10.4158/EP09154.RA.

    Article  PubMed  Google Scholar 

  2. Garg A. Acquired and inherited lipodystrophies. N Engl J Med. 2004;350(12):1220–34. https://doi.org/10.1056/NEJMra025261.

    Article  CAS  PubMed  Google Scholar 

  3. Garg A, Misra A. Lipodystrophies: rare disorders causing metabolic syndrome. Endocrinol Metab Clin N Am. 2004;33(2):305–31. https://doi.org/10.1016/j.ecl.2004.03.003.

    Article  CAS  Google Scholar 

  4. Garg A. Clinical review#: Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96(11):3313–25. https://doi.org/10.1210/jc.2011-1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • Brown RJ, Araujo-Vilar D, Cheung PT, Dunger D, Garg A, Jack M, et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J Clin Endocrinol Metab. 2016;101(12):4500–11. https://doi.org/10.1210/jc.2016-2466. A multisociety practice guideline summarizing the diagnosis and management of lipodystrophy syndromes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akinci B, Sahinoz M, Oral E. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., editors. Lipodystrophy syndromes: presentation and Treatment. South Dartmouth: Endotext; 2000.

    Google Scholar 

  7. Papendieck L, Araujo MB. Clinical outcome in a series of pediatric patients with congenital generalized lipodystrophies treated with dietary therapy. J Pediatr Endocrinol Metab. 2018;31(1):77–83. https://doi.org/10.1515/jpem-2017-0355.

    Article  CAS  PubMed  Google Scholar 

  8. Handelsman Y, Oral EA, Bloomgarden ZT, Brown RJ, Chan JL, Einhorn D, et al. The clinical approach to the detection of lipodystrophy - an AACE consensus statement. Endocr Pract. 2013;19(1):107–16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Akinci G, Topaloglu H, Akinci B, Onay H, Karadeniz C, Ergul Y, et al. Spectrum of clinical manifestations in two young Turkish patients with congenital generalized lipodystrophy type 4. Eur J Med Genet. 2016;59(6–7):320–4. https://doi.org/10.1016/j.ejmg.2016.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119(9):2623–33. https://doi.org/10.1172/JCI38660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89(6):2608–15. https://doi.org/10.1210/jc.2004-0433.

    Article  CAS  PubMed  Google Scholar 

  12. Lager CJ, Esfandiari NH, Subauste AR, Kraftson AT, Brown MB, Cassidy RB, et al. Roux-en-Y gastric bypass Vs. sleeve gastrectomy: balancing the risks of surgery with the benefits of weight loss. Obes Surg. 2017;27(1):154–61. https://doi.org/10.1007/s11695-016-2265-2.

    Article  PubMed  Google Scholar 

  13. Melvin A, Adams C, Flanagan C, Gaff L, Gratton B, Gribble F, et al. Roux-en-Y gastric bypass surgery in the management of familial partial lipodystrophy type 1. J Clin Endocrinol Metab. 2017;102(10):3616–20. https://doi.org/10.1210/jc.2017-01235.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Utzschneider KM, Trence DL. Effectiveness of gastric bypass surgery in a patient with familial partial lipodystrophy. Diabetes Care. 2006;29(6):1380–2. https://doi.org/10.2337/dc06-0130.

    Article  PubMed  Google Scholar 

  15. Ciudin A, Baena-Fustegueras JA, Fort JM, Encabo G, Mesa J, Lecube A. Successful treatment for the Dunnigan-type familial partial lipodystrophy with Roux-en-Y gastric bypass. Clin Endocrinol. 2011;75(3):403–4. https://doi.org/10.1111/j.1365-2265.2011.04057.x.

    Article  Google Scholar 

  16. Grundfest-Broniatowski S, Yan J, Kroh M, Kilim H, Stephenson A. Successful treatment of an unusual case of FPLD2: the role of Roux-en-Y gastric bypass-case report and literature review. J Gastrointest Surg. 2017;21(4):739–43. https://doi.org/10.1007/s11605-016-3300-2.

    Article  PubMed  Google Scholar 

  17. Vantyghem MC, Vigouroux C, Magre J, Desbois-Mouthon C, Pattou F, Fontaine P, et al. Late-onset lipoatrophic diabetes. Phenotypic and genotypic familial studies and effect of treatment with metformin and lispro insulin analog. Diabetes Care. 1999;22(8):1374–6.

    Article  CAS  PubMed  Google Scholar 

  18. Luedtke A, Boschmann M, Colpe C, Engeli S, Adams F, Birkenfeld AL, et al. Thiazolidinedione response in familial lipodystrophy patients with LMNA mutations: a case series. Horm Metab Res. 2012;44(4):306–11. https://doi.org/10.1055/s-0031-1301284.

    Article  CAS  PubMed  Google Scholar 

  19. Moreau F, Boullu-Sanchis S, Vigouroux C, Lucescu C, Lascols O, Sapin R, et al. Efficacy of pioglitazone in familial partial lipodystrophy of the Dunnigan type: a case report. Diabetes Metab. 2007;33(5):385–9. https://doi.org/10.1016/j.diabet.2007.04.005.

    Article  CAS  PubMed  Google Scholar 

  20. McLaughlin PD, Ryan J, Hodnett PA, O'Halloran D, Maher MM. Quantitative whole-body MRI in familial partial lipodystrophy type 2: changes in adipose tissue distribution coincide with biochemical improvement. AJR Am J Roentgenol. 2012;199(5):W602–6. https://doi.org/10.2214/AJR.11.8110.

    Article  PubMed  Google Scholar 

  21. •• Arioglu E, Duncan-Morin J, Sebring N, Rother KI, Gottlieb N, Lieberman J, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Intern Med. 2000;133(4):263–74. This is an open-label prospective study showing the benefits of TZDs in patients with partial lipodystrophy.

  22. Agostini M, Schoenmakers E, Beig J, Fairall L, Szatmari I, Rajanayagam O, et al. A pharmacogenetic approach to the treatment of patients with PPARG mutations. Diabetes. 2018;67(6):1086–92. https://doi.org/10.2337/db17-1236.

    Article  CAS  PubMed  Google Scholar 

  23. Sleilati GG, Leff T, Bonnett JW, Hegele RA. Efficacy and safety of pioglitazone in treatment of a patient with an atypical partial lipodystrophy syndrome. Endocr Pract. 2007;13(6):656–61. https://doi.org/10.4158/EP.13.6.656.

    Article  PubMed  Google Scholar 

  24. Iwanishi M, Ebihara K, Kusakabe T, Chen W, Ito J, Masuzaki H, et al. Clinical characteristics and efficacy of pioglitazone in a Japanese diabetic patient with an unusual type of familial partial lipodystrophy. Metabolism. 2009;58(12):1681–7. https://doi.org/10.1016/j.metabol.2009.04.043.

    Article  CAS  PubMed  Google Scholar 

  25. Cochran E, Musso C, Gorden P. The use of U-500 in patients with extreme insulin resistance. Diabetes Care. 2005;28(5):1240–4.

    Article  CAS  PubMed  Google Scholar 

  26. Banning F, Rottenkolber M, Freibothe I, Seissler J, Lechner A. Insulin secretory defect in familial partial lipodystrophy Type 2 and successful long-term treatment with a glucagon-like peptide 1 receptor agonist. Diabet Med. 2017;34(12):1792–4. https://doi.org/10.1111/dme.13527.

    Article  CAS  PubMed  Google Scholar 

  27. Oliveira J, Lau E, Carvalho D, Freitas P. Glucagon-like peptide-1 analogues - an efficient therapeutic option for the severe insulin resistance of lipodystrophic syndromes: two case reports. J Med Case Rep. 2017;11(1):12. https://doi.org/10.1186/s13256-016-1175-1.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Joubert M, Jagu B, Montaigne D, Marechal X, Tesse A, Ayer A, et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents cardiomyopathy in a diabetic lipodystrophic mouse model. Diabetes. 2017;66(4):1030–40. https://doi.org/10.2337/db16-0733.

    Article  CAS  PubMed  Google Scholar 

  29. Johns KW, Bennett MT, Bondy GP. Are HIV positive patients resistant to statin therapy? Lipids Health Dis. 2007;6:27. https://doi.org/10.1186/1476-511X-6-27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Macallan DC, Baldwin C, Mandalia S, Pandol-Kaljevic V, Higgins N, Grundy A, et al. Treatment of altered body composition in HIV-associated lipodystrophy: comparison of rosiglitazone, pravastatin, and recombinant human growth hormone. HIV Clin Trials. 2008;9(4):254–68. https://doi.org/10.1310/hct0904-254.

    Article  PubMed  Google Scholar 

  31. •• Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346(8):570–8. https://doi.org/10.1056/NEJMoa012437. This is the first clinical study showing dramatic benefits of leptin therapy in patients with lipodystrophy.

  32. Ahmad Z, Subramanyam L, Szczepaniak L, Simha V, Adams-Huet B, Garg A. Cholic acid for hepatic steatosis in patients with lipodystrophy: a randomized, controlled trial. Eur J Endocrinol. 2013;168(5):771–8. https://doi.org/10.1530/EJE-12-0969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401(6748):73–6. https://doi.org/10.1038/43448.

    Article  CAS  PubMed  Google Scholar 

  34. Brown RJ, Oral EA, Cochran E, Araújo-Vilar D, Savage DB, Long A, et al. Long-term effectiveness and safety of metreleptin in the treatment of patients with generalized lipodystrophy. Endocrine. 2018;60(3):479–89. https://doi.org/10.1007/s12020-018-1589-1.

  35. Araujo-Vilar D, Sánchez-Iglesias S, Guillín-Amarelle C, Castro A, Lage M, Pazos M, et al. Recombinant human leptin treatment in genetic lipodystrophic syndromes: the long-term Spanish experience. Endocrine. 2015;49(1):139–47. https://doi.org/10.1007/s12020-014-0450-4.

  36. Araújo-Vilar D, Santini F. Diagnosis and treatment of lipodystrophy: a step-by-step approach. J Endocrinol Invest. 2018;27. https://doi.org/10.1007/s40618-018-0887-z.

  37. Tsoukas MA MC. Endocrinology Adult and Pediatric. In: Jameson JL DL, editor. 7 ed.: Saunders, In Press.

  38. McDuffie JR, Riggs PA, Calis KA, Freedman RJ, Oral EA, DePaoli AM, et al. Effects of exogenous leptin on satiety and satiation in patients with lipodystrophy and leptin insufficiency. J Clin Endocrinol Metab. 2004;89(9):4258–63. https://doi.org/10.1210/jc.2003-031868.

    Article  CAS  PubMed  Google Scholar 

  39. Moran SA, Patten N, Young JR, Cochran E, Sebring N, Reynolds J, et al. Changes in body composition in patients with severe lipodystrophy after leptin replacement therapy. Metabolism. 2004;53(4):513–9.

    Article  CAS  PubMed  Google Scholar 

  40. Ebihara K, Kusakabe T, Hirata M, Masuzaki H, Miyanaga F, Kobayashi N, et al. Efficacy and safety of leptin-replacement therapy and possible mechanisms of leptin actions in patients with generalized lipodystrophy. J Clin Endocrinol Metab. 2007;92(2):532–41. https://doi.org/10.1210/jc.2006-1546.

    Article  CAS  PubMed  Google Scholar 

  41. Schlogl H, Muller K, Horstmann A, Miehle K, Puschel J, Villringer A, et al. Leptin substitution in patients with lipodystrophy: neural correlates for long-term success in the normalization of eating behavior. Diabetes. 2016;65(8):2179–86. https://doi.org/10.2337/db15-1550.

    Article  CAS  PubMed  Google Scholar 

  42. Schlogl H, Muller K, Horstmann A, Pleger B, Miehle K, Moller H et al. Leptin-substitution in patients with congenital lipodystrophy increases connectivity in reward-related brain structures: an fMRI study. Exp Clin Endocrinol Diabetes 2014;122(3). doi:https://doi.org/10.1055/s-0034-1371982.

  43. Schlogl H, Muller K, Horstmann A, Miehle K, Pleger B, Moller H, et al. Leptin-substitution increases connectivity in reward-related brain areas in patients with congenital lipodystrophy. Diabetologia. 2015;58:S71–S.

    Google Scholar 

  44. • Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest. 2002;109(10):1345–50. https://doi.org/10.1172/JCI15001. This study shows the efficacy of leptin treatment to improve insulin-stimulated hepatic and peripheral glucose metabolism in lipodystrophic patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vatier C, Fetita S, Boudou P, Tchankou C, Deville L, Riveline J, et al. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes. Diabetes Obes Metab. 2016;18(7):693–7. https://doi.org/10.1111/dom.12606.

    Article  CAS  PubMed  Google Scholar 

  46. Muniyappa R, Brown RJ, Mari A, Joseph J, Warren MA, Cochran EK, et al. Effects of leptin replacement therapy on pancreatic beta-cell function in patients with lipodystrophy. Diabetes Care. 2014;37(4):1101–7. https://doi.org/10.2337/dc13-2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. • Diker-Cohen T, Cochran E, Gorden P, Brown RJ. Partial and generalized lipodystrophy: comparison of baseline characteristics and response to metreleptin. J Clin Endocrinol Metab. 2015;100(5):1802–10. https://doi.org/10.1210/jc.2014-4491. This study defines predictors for treatment response to metreleptin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chan JL, Lutz K, Cochran E, Huang W, Peters Y, Weyer C, et al. Clinical effects of long-term metreleptin treatment in patients with lipodystrophy. Endocr Pract. 2011;17(6):922–32. https://doi.org/10.4158/EP11229.OR.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chong AY, Lupsa BC, Cochran EK, Gorden P. Efficacy of leptin therapy in the different forms of human lipodystrophy. Diabetologia. 2010;53(1):27–35. https://doi.org/10.1007/s00125-009-1502-9.

    Article  CAS  PubMed  Google Scholar 

  50. Vatier C, Arnaud L, Prieur X, Guyomarch B, Le May C, Bigot E, et al. One-year metreleptin therapy decreases PCSK9 serum levels in diabetic patients with monogenic lipodystrophy syndromes. Diabetes Metab. 2017;43(3):275–9. https://doi.org/10.1016/j.diabet.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  51. Ajluni N, Dar M, Xu J, Neidert AH, Oral EA. Efficacy and safety of metreleptin in patients with partial lipodystrophy: lessons from an expanded access program. J Diabetes Metab 2016;7(3). doi:https://doi.org/10.4172/2155-6156.1000659.

  52. Simha V, Subramanyam L, Szczepaniak L, Quittner C, Adams-Huet B, Snell P, et al. Comparison of efficacy and safety of leptin replacement therapy in moderately and severely hypoleptinemic patients with familial partial lipodystrophy of the Dunnigan variety. J Clin Endocrinol Metab. 2012;97(3):785–92. https://doi.org/10.1210/jc.2011-2229.

    Article  CAS  PubMed  Google Scholar 

  53. Park JY, Javor ED, Cochran EK, DePaoli AM, Gorden P. Long-term efficacy of leptin replacement in patients with Dunnigan-type familial partial lipodystrophy. Metabolism. 2007;56(4):508–16. https://doi.org/10.1016/j.metabol.2006.11.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Simha V, Szczepaniak LS, Wagner AJ, DePaoli AM, Garg A. Effect of leptin replacement on intrahepatic and intramyocellular lipid content in patients with generalized lipodystrophy. Diabetes Care. 2003;26(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  55. Javor ED, Ghany MG, Cochran EK, Oral EA, DePaoli AM, Premkumar A, et al. Leptin reverses nonalcoholic steatohepatitis in patients with severe lipodystrophy. Hepatology. 2005;41(4):753–60. https://doi.org/10.1002/hep.20672.

    Article  CAS  PubMed  Google Scholar 

  56. • Safar Zadeh E, Lungu AO, Cochran EK, Brown RJ, Ghany MG, Heller T, et al. The liver diseases of lipodystrophy: the long-term effect of leptin treatment. J Hepatol. 2013;59(1):131–7. https://doi.org/10.1016/j.jhep.2013.02.007. The study reports the effect of metreleptin on hepatic disease associated with lipodystrophy.

    Article  CAS  PubMed  Google Scholar 

  57. Machado MV, Cortez-Pinto H. Leptin in the treatment of lipodystrophy-associated nonalcoholic fatty liver disease: are we there already? Expert Rev Gastroenterol Hepatol. 2013;7(6):513–5. https://doi.org/10.1586/17474124.2013.814903.

    Article  CAS  PubMed  Google Scholar 

  58. Brown RJ, Meehan CA, Cochran E, Rother KI, Kleiner DE, Walter M, et al. Effects of metreleptin in pediatric patients with lipodystrophy. J Clin Endocrinol Metab. 2017;102(5):1511–9. https://doi.org/10.1210/jc.2016-3628.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Casey SP, Lokan J, Testro A, Farquharson S, Connelly A, Proietto J, et al. Post-liver transplant leptin results in resolution of severe recurrence of lipodystrophy-associated nonalcoholic steatohepatitis. Am J Transplant. 2013;13(11):3031–4. https://doi.org/10.1111/ajt.12436.

    Article  CAS  PubMed  Google Scholar 

  60. Friedman J. The long road to leptin. J Clin Invest. 2016;126(12):4727–34. https://doi.org/10.1172/JCI91578.

    Article  PubMed  PubMed Central  Google Scholar 

  61. • Brown RJ, Valencia A, Startzell M, Cochran E, Walter PJ, Garraffo HM, et al. Metreleptin improves insulin sensitivity independent of food intake in humans with lipodystrophy. J Clin Invest. 2018. https://doi.org/10.1172/JCI95476. The study shows that metreleptin improves insulin sensitivity and decreases hepatic and circulating triglycerides independent of its effects on food intake.

  62. Javor ED, Moran SA, Young JR, Cochran EK, DePaoli AM, Oral EA, et al. Proteinuric nephropathy in acquired and congenital generalized lipodystrophy: baseline characteristics and course during recombinant leptin therapy. J Clin Endocrinol Metab. 2004;89(7):3199–207. https://doi.org/10.1210/jc.2003-032140.

    Article  CAS  PubMed  Google Scholar 

  63. • Oral EA, Ruiz E, Andewelt A, Sebring N, Wagner AJ, Depaoli AM, et al. Effect of leptin replacement on pituitary hormone regulation in patients with severe lipodystrophy. J Clin Endocrinol Metab. 2002;87(7):3110–7. https://doi.org/10.1210/jcem.87.7.8591. The study investigates the effect of metreleptin on pituitary hormones in patients with lipodystrophy.

    Article  CAS  PubMed  Google Scholar 

  64. Musso C, Cochran E, Javor E, Young J, Depaoli AM, Gorden P. The long-term effect of recombinant methionyl human leptin therapy on hyperandrogenism and menstrual function in female and pituitary function in male and female hypoleptinemic lipodystrophic patients. Metabolism. 2005;54(2):255–63. https://doi.org/10.1016/j.metabol.2004.08.021.

    Article  CAS  PubMed  Google Scholar 

  65. Abel BS, Muniyappa R, Stratton P, Skarulis MC, Gorden P, Brown RJ. Effects of recombinant human leptin (metreleptin) on nocturnal luteinizing hormone secretion in lipodystrophy patients. Neuroendocrinology. 2016;103(3–4):402–7. https://doi.org/10.1159/000439432.

    Article  CAS  PubMed  Google Scholar 

  66. Lungu AO, Zadeh ES, Goodling A, Cochran E, Gorden P. Insulin resistance is a sufficient basis for hyperandrogenism in lipodystrophic women with polycystic ovarian syndrome. J Clin Endocrinol Metab. 2012;97(2):563–7. https://doi.org/10.1210/jc.2011-1896.

    Article  CAS  PubMed  Google Scholar 

  67. Oral EA, Javor ED, Ding L, Uzel G, Cochran EK, Young JR, et al. Leptin replacement therapy modulates circulating lymphocyte subsets and cytokine responsiveness in severe lipodystrophy. J Clin Endocrinol Metab. 2006;91(2):621–8. https://doi.org/10.1210/jc.2005-1220.

    Article  CAS  PubMed  Google Scholar 

  68. Maguire M, Lungu A, Gorden P, Cochran E, Stratton P. Pregnancy in a woman with congenital generalized lipodystrophy: leptin’s vital role in reproduction. Obstet Gynecol. 2012;119(2 Pt 2):452–5. https://doi.org/10.1097/AOG.0b013e31822cecf7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Meehan CA, Cochran E, Kassai A, Brown RJ, Gorden P. Metreleptin for injection to treat the complications of leptin deficiency in patients with congenital or acquired generalized lipodystrophy. Expert Rev Clin Pharmacol. 2016;9(1):59–68. https://doi.org/10.1586/17512433.2016.1096772.

    Article  CAS  PubMed  Google Scholar 

  70. Kamran F, Rother KI, Cochran E, Safar Zadeh E, Gorden P, Brown RJ. Consequences of stopping and restarting leptin in an adolescent with lipodystrophy. Horm Res Paediatr. 2012;78(5–6):320–5. https://doi.org/10.1159/000341398.

    Article  CAS  PubMed  Google Scholar 

  71. Lebastchi J, Ajluni N, Neidert A, Oral EA. A report of three cases with acquired generalized lipodystrophy with distinct autoimmune conditions treated with metreleptin. J Clin Endocrinol Metab. 2015;100(11):3967–70. https://doi.org/10.1210/jc.2015-2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Christensen JD, Lungu AO, Cochran E, Collins MT, Gafni RI, Reynolds JC, et al. Bone mineral content in patients with congenital generalized lipodystrophy is unaffected by metreleptin replacement therapy. J Clin Endocrinol Metab. 2014;99(8):E1493–500. https://doi.org/10.1210/jc.2014-1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Simha V, Zerwekh JE, Sakhaee K, Garg A. Effect of subcutaneous leptin replacement therapy on bone metabolism in patients with generalized lipodystrophy. J Clin Endocrinol Metab. 2002;87(11):4942–5. https://doi.org/10.1210/jc.2002-020792.

    Article  CAS  PubMed  Google Scholar 

  74. Chan JL, Koda J, Heilig JS, Cochran EK, Gorden P, Oral EA, et al. Immunogenicity associated with metreleptin treatment in patients with obesity or lipodystrophy. Clin Endocrinol. 2016;85(1):137–49. https://doi.org/10.1111/cen.12980.

    Article  CAS  Google Scholar 

  75. Beltrand J, Lahlou N, Le Charpentier T, Sebag G, Leka S, Polak M, et al. Resistance to leptin-replacement therapy in Berardinelli-Seip congenital lipodystrophy: an immunological origin. Eur J Endocrinol. 2010;162(6):1083–91. https://doi.org/10.1530/EJE-09-1027.

    Article  CAS  PubMed  Google Scholar 

  76. • Brown RJ, Chan JL, Jaffe ES, Cochran E, DePaoli AM, Gautier JF, et al. Lymphoma in acquired generalized lipodystrophy. Leuk Lymphoma. 2016;57(1):45–50. https://doi.org/10.3109/10428194.2015.1040015. This article focuses on lymphoma development in patients with lipodystrophy.

    Article  CAS  PubMed  Google Scholar 

  77. Aslam A, Savage DB, Coulson IH. Acquired generalized lipodystrophy associated with peripheral T cell lymphoma with cutaneous infiltration. Int J Dermatol. 2015;54(7):827–9. https://doi.org/10.1111/ijd.12185.

    Article  PubMed  Google Scholar 

  78. Bae MJ, Kim SS, Kim WJ, Yi YS, Jeon YK, Kim BH, et al. High prevalence of papillary thyroid cancer in Korean women with insulin resistance. Head Neck. 2016;38(1):66–71. https://doi.org/10.1002/hed.23848.

    Article  PubMed  Google Scholar 

  79. Pitoia F, Abelleira E, Bueno F, Urciuoli C, Schmidt A, Niepomniszcze H. Insulin resistance is another factor that increases the risk of recurrence in patients with thyroid cancer. Endocrine. 2015;48(3):894–901. https://doi.org/10.1007/s12020-014-0416-6.

    Article  CAS  PubMed  Google Scholar 

  80. Guler HP, Zapf J, Froesch ER. Short-term metabolic effects of recombinant human insulin-like growth factor I in healthy adults. N Engl J Med. 1987;317(3):137–40. https://doi.org/10.1056/NEJM198707163170303.

    Article  CAS  PubMed  Google Scholar 

  81. Kuzuya H, Matsuura N, Sakamoto M, Makino H, Sakamoto Y, Kadowaki T, et al. Trial of insulinlike growth factor I therapy for patients with extreme insulin resistance syndromes. Diabetes. 1993;42(5):696–705.

    Article  CAS  PubMed  Google Scholar 

  82. Moses AC, Morrow LA, O'Brien M, Moller DE, Flier JS. Insulin-like growth factor I (rhIGF-I) as a therapeutic agent for hyperinsulinemic insulin-resistant diabetes mellitus. Diabetes Res Clin Pract. 1995;28(Suppl):S185–94.

    Article  CAS  PubMed  Google Scholar 

  83. Satoh M, Yoshizawa A, Takesue M, Saji T, Yokoya S. Long-term effects of recombinant human insulin-like growth factor I treatment on glucose and lipid metabolism and the growth of a patient with congenital generalized lipodystrophy. Endocr J. 2006;53(5):639–45.

    Article  CAS  PubMed  Google Scholar 

  84. Grimberg A. Mechanisms by which IGF-I may promote cancer. Cancer Biol Ther. 2003;2(6):630–5.

    Article  CAS  PubMed  Google Scholar 

  85. Chernausek SD, Backeljauw PF, Frane J, Kuntze J, Underwood LE, Group GHISC. Long-term treatment with recombinant insulin-like growth factor (IGF)-I in children with severe IGF-I deficiency due to growth hormone insensitivity. J Clin Endocrinol Metab. 2007;92(3):902–10. https://doi.org/10.1210/jc.2006-1610.

    Article  CAS  PubMed  Google Scholar 

  86. Bang P, Polak M, Woelfle J, Houchard A, Group EIRS. Effectiveness and safety of rhIGF-1 therapy in children: the European Increlex® Growth Forum Database Experience. Horm Res Paediatr. 2015;83(5):345–57. https://doi.org/10.1159/000371798.

    Article  CAS  PubMed  Google Scholar 

  87. Norata GD, Tsimikas S, Pirillo A, Catapano AL. Apolipoprotein C-III: from pathophysiology to pharmacology. Trends Pharmacol Sci. 2015;36(10):675–87. https://doi.org/10.1016/j.tips.2015.07.001.

    Article  CAS  PubMed  Google Scholar 

  88. Gaudet D, Digenio A, Alexander V, Arca M, Jones A, Stroes E, et al. The APPROACH study: a randomized, double-blind, placebo-controlled, phase 3 study of volanesorsen administered subcutaneously to patients with familial chylomicronemia syndrome (Fcs). Clin Cardiol. 2017;40:14.

    Google Scholar 

  89. Gouni-Berthold I, Alexander V, Digenio A, DuFour R, Steinhagen-Thiessen E, Martin S, et al. Apolipoprotein C-III inhibition with volanesorsen in patients with hypertriglyceridemia (COMPASS): a randomized, double-blind, placebo-controlled trial. Atheroscler Suppl. 2017;28:E1–2. https://doi.org/10.1016/j.atherosclerosissup.2017.08.003.

    Article  Google Scholar 

  90. Olkkonen VM, Sinisalo J, Jauhiainen M. New medications targeting triglyceride-rich lipoproteins: can inhibition of ANGPTL3 or apoC-III reduce the residual cardiovascular risk? Atherosclerosis. 2018;272:27–32. https://doi.org/10.1016/j.atherosclerosis.2018.03.019.

    Article  CAS  PubMed  Google Scholar 

  91. Stahel P, Xiao C, Hegele RA, Lewis GF. The atherogenic dyslipidemia complex and novel approaches to cardiovascular disease prevention in diabetes. Can J Cardiol. 2017;34:595–604. https://doi.org/10.1016/j.cjca.2017.12.007.

    Article  PubMed  Google Scholar 

  92. Gaudet D, Gipe DA, Pordy R, Ahmad Z, Cuchel M, Shah PK, et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N Engl J Med. 2017;377(3):296–7. https://doi.org/10.1056/NEJMc1705994.

    Article  PubMed  Google Scholar 

  93. Bisgaier CL, Essenburg AD, Barnett BC, Auerbach BJ, Haubenwallner S, Leff T, et al. A novel compound that elevates high density lipoprotein and activates the peroxisome proliferator activated receptor. J Lipid Res. 1998;39(1):17–30.

    CAS  PubMed  Google Scholar 

  94. Srivastava RAK, Cornicelli JA, Markham B, Bisgaier CL. Gemcabene, a first-in-class lipid-lowering agent in late-stage development, down-regulates acute-phase C-reactive protein via C/EBP-delta-mediated transcriptional mechanism. Mol Cell Biochem. 2018. https://doi.org/10.1007/s11010-018-3353-5.

  95. Stein E, Bays H, Koren M, Bakker-Arkema R, Bisgaier C. Efficacy and safety of gemcabene as add-on to stable statin therapy in hypercholesterolemic patients. J Clin Lipidol. 2016;10(5):1212–22. https://doi.org/10.1016/j.jacl.2016.08.002.

    Article  PubMed  Google Scholar 

  96. Bays HE, McKenney JM, Dujovne CA, Schrott HG, Zema MJ, Nyberg J, et al. Effectiveness and tolerability of a new lipid-altering agent, gemcabene, in patients with low levels of high-density lipoprotein cholesterol. Am J Cardiol. 2003;92(5):538–43.

    Article  CAS  PubMed  Google Scholar 

  97. Markham A. Baricitinib: first global approval. Drugs. 2017;77(6):697–704. https://doi.org/10.1007/s40265-017-0723-3.

    Article  CAS  PubMed  Google Scholar 

  98. Sanchez GAM, Reinhardt A, Ramsey S, Wittkowski H, Hashkes PJ, Berkun Y, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. 2018;128:3041–52. https://doi.org/10.1172/JCI98814.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Abulizi A, Perry RJ, Camporez JPG, Jurczak MJ, Petersen KF, Aspichueta P, et al. A controlled-release mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice. FASEB J. 2017;31(7):2916–24. https://doi.org/10.1096/fj.201700001R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Baptista LS, da Silva KR, da Pedrosa CS, Claudio-da-Silva C, Carneiro JR, Aniceto M, et al. Adipose tissue of control and ex-obese patients exhibit differences in blood vessel content and resident mesenchymal stem cell population. Obes Surg. 2009;19(9):1304–12. https://doi.org/10.1007/s11695-009-9899-2.

    Article  PubMed  Google Scholar 

  101. Baptista LS, Silva KR, Borojevic R. Obesity and weight loss could alter the properties of adipose stem cells? World J Stem Cells. 2015;7(1):165–73. https://doi.org/10.4252/wjsc.v7.i1.165.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Matsushita K, Dzau VJ. Mesenchymal stem cells in obesity: insights for translational applications. Lab Investig. 2017;97(10):1158–66. https://doi.org/10.1038/labinvest.2017.42.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our patients who have inspired us for the last two decades. In addition, the clinical research team at UM comprised of Nevin Ajluni, MD, Adam Neidert, MS, Rita Hench, BS, Diana Rus, BS, and Jelal Eldin Abdel Wahab, MD provided invaluable support for the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Arioglu Oral.

Ethics declarations

Conflict of Interest

Baris Akinci has attended Scientific Advisory Board Meetings organized by Aegerion Pharmaceuticals, and has received honoraria as a speaker from AstraZeneca, Lilly, MSD, Novartis, Novo Nordisk, Boehringer-Ingelheim, Servier, and Sanofi-Aventis.

Rasimcan Meral declares that he has no conflict of interest.

Elif Arioglu Oral reports the following conflicts: grant support: Aegerion Pharmaceuticals, Ionis Pharmaceuticals, Akcea Therapeutics, Gemphire Therapeutics (current), GI Dynamics, AstraZeneca (past 2 years). Consultant or advisor: AstraZeneca and BMS (Past), Thera Therapeutics, Regeneron, Aegerion (current). Drug support: Aegerion Pharmaceuticals, Akcea Therapeutics, Rhythm Pharmaceuticals. Other support: Boehringer-Ingelheim (past 2 years) and Aegerion Pharmaceuticals (current). She also has two patents: one patent is currently with Aegerion for the use of metreleptin for the treatment of lipodystrophy syndromes (issued and licensed, but she has not received any royalties, they go to the NIH), and the second patent is for the use of metreleptin for the treatment of NASH.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinci, B., Meral, R. & Oral, E.A. Update on Therapeutic Options in Lipodystrophy. Curr Diab Rep 18, 139 (2018). https://doi.org/10.1007/s11892-018-1100-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1100-7

Keywords

Navigation