Skip to main content
Log in

Inhibition of the renin angiotensin system: Implications for the endothelium

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The endothelium is critically involved in modulating vascular tone through the release of vasodilator (mainly nitric oxide; NO) and vasoconstrictor agents. Under normal conditions the endothelium induces NO-mediated vasodilation, and opposes cell adhesion and thrombosis. Angiotensin II-induced generation of reactive oxygen species plays a key role in the pathophysiology of endothelial dysfunction by reducing NO bioavailability. Endothelial dysfunction is associated with several pathologic conditions, including hypertension and diabetes, and is characterized by altered vascular tone, inflammation, and thrombosis in the vascular wall. Inhibition of the renin-angiotensin-aldosterone system has induced beneficial effects on endothelial function in animals and humans. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor antagonists have improved endothelial function in hypertension and diabetes, slowed the progression of atherosclerosis, and reduced the risk associated with cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Schiffrin EL, Touyz RM: From bedside to bench to bedside: role of the renin-angiotensin-aldosterone system in remodeling of resistance arteries in hypertension. Am J Physiol Heart Circ Physiol 2004, 287:H435-H446.

    Article  PubMed  CAS  Google Scholar 

  2. Savoia C, Schiffrin EL: Inflammation in hypertension. Curr Opin Nephrol Hypertens 2006, 15:152–158.

    Article  PubMed  CAS  Google Scholar 

  3. Touyz R: Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II. Curr Opin Nephrol Hypertens 2005, 14:125–131.

    Article  PubMed  CAS  Google Scholar 

  4. Feldman RD, Gros R: Impaired vasodilator function in hypertension. The role of alterations in receptor-G protein coupling. Trends Cardiovasc Med 1988, 8:297–305.

    Article  Google Scholar 

  5. Lamping K: Interactions between NO and cAMP in the regulation of vascular tone. Arterioscler Thromb Vasc Biol 2001, 21:729–730.

    PubMed  CAS  Google Scholar 

  6. Park JB, Schiffrin EL: Correlation of endothelial function in large and small arteries in human essential hypertension. J Hypertens 2001, 19:415–420.

    Article  PubMed  CAS  Google Scholar 

  7. Vanhoutte PM, Feletou M, Taddei S: Endothelium dependent contraction in hypertension. Br J Pharmacol 2005, 144:449–458.

    Article  PubMed  CAS  Google Scholar 

  8. Diedrich DA, Yang Z, Bulher FR, Luscher TF: Impaired endothelium-dependent relaxation in hypertensive resistance arteries involves the cyclooxygenase pathway. Am J Physiol Heart Circ Physiol 1990, 258:H445-H451.

    Google Scholar 

  9. Luckette W, Otsuka Y, Carretero O: The loss of endothelium-dependent vascular relaxation in hypertension. Hypertension 1986, 8:II61-II66.

    Google Scholar 

  10. Cai H, Harrison DG: Endothelial dysfunction in cardiovascular disease. The role of oxidant stress. Circ Res 2000, 87:840–844.

    PubMed  CAS  Google Scholar 

  11. Landmesser U, Dikalov S, Price SR, et al.: Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003, 111:1201–1209.

    Article  PubMed  CAS  Google Scholar 

  12. Touyz RM, Schiffrin EL: Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol 2004, 122:339–352. A complete update on the role of ROS in cardiovascular pathology.

    Article  PubMed  CAS  Google Scholar 

  13. Lassegue B, Clempus RE: Vascular NAD(P)H oxidase: specific features, expression and regulation. Am J Physiol Regul Integr Comp Physiol 2003, 285:R277-R297.

    PubMed  CAS  Google Scholar 

  14. Li JM, Shah AM: Mechanism of endothelial cell NAD(P)H oxidase activation by angiotensin II. Role of p47phox subunit. J Biol Chem 2003, 278:12094–12100.

    Article  PubMed  CAS  Google Scholar 

  15. Pagano PJ, Clark JK, Cifuentes-Pagano ME, et al.: Localization of a constitutive active, phagocyte-like NAD(P)H oxidase in rabbit aortic adventitia. Enhancement by angiotensin II. Proc Natl Acad Sci U S A 1997, 94:14483–14488.

    Article  PubMed  CAS  Google Scholar 

  16. Fukui T, Ishizaka N, Rajagopalan S, et al.: p22phox mRNA expression and NAD(P)H oxidase activity are increased in aortas from hypertensive rats. Circ Res 1997, 80:45–51.

    PubMed  CAS  Google Scholar 

  17. Touyz RM, Deng LY, He G, et al.: Angiotensin II stimulates DNA and protein synthesis in vascular smooth muscle cells from human arteries: role of extracellular signal-regulated kinases. J Hypertens 1999, 17:907–916.

    Article  PubMed  CAS  Google Scholar 

  18. Touyz RM, Yao G, Schiffrin EL: c-Src induces phosphorylation and translocation of p47phox. Role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2003, 23:981–987.

    Article  PubMed  CAS  Google Scholar 

  19. Schiffrin EL: Vascular endothelin in hypertension. Vasc Pharmacol 2005, 43:19–29. A recent and comprehensive review on the role of the endothelin system in cardiovascular pathology.

    Article  CAS  Google Scholar 

  20. Hong HJ, Chan P, Liu JC, et al.: Angiotensin II induces endothelin-1 gene expression via extracellular signalregulated kinase pathway in rat aortic smooth muscle cells. Cardiovasc Res 2004, 61:159–168.

    Article  PubMed  CAS  Google Scholar 

  21. Pu Q, Neves MF, Virdis A, et al.: Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension 2003, 42:49–55.

    Article  PubMed  CAS  Google Scholar 

  22. Kahler J, Mendel S, Weckmuller J, et al.: Oxidative stress increases synthesis of big endothelin-1 by activation of the endothelin-1 promoter. J Mol Cell Cardiol 2000, 32:1429–1437.

    Article  PubMed  CAS  Google Scholar 

  23. Kahler J, Ewert A, Weckmuller J, et al.: Oxidative stress increases endothelin-1 synthesis in human coronary artery smooth muscle cells. J Cardiovasc Pharmacol 2001, 38:49–57.

    Article  PubMed  CAS  Google Scholar 

  24. Li LX, Fink GD, Watts SW, et al.: Endothelin-1 increases vascular superoxide via endothelin A-NAD(P)H oxidase pathway in low renin hypertension. Circulation 2003, 107:1053–1058.

    Article  PubMed  CAS  Google Scholar 

  25. Iglarz M, Touyz RM, Amiri F, et al.: Effect of peroxisome proliferator-activated receptor-alpha and-gamma activators on vascular remodeling in endothelin-dependent hypertension. Arterioscl Thromb Vasc Biol 2003, 23:45–51.

    Article  PubMed  CAS  Google Scholar 

  26. Amiri F, Virdis A, Neves MF, et al.: Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation 2004, 110:2233–2240.

    Article  PubMed  CAS  Google Scholar 

  27. Touz RM, Yao G, Viel E, et al.: Angiotensin II and endothelin-1 regulate MAP kinases through different redoxdependent mechanisms in human vascular smooth muscle cells. J Hypertens 2004, 22:1141–1149.

    Article  Google Scholar 

  28. Wedgwood S, Dettman RW, Black SM, et al.: ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol 2001, 281:L1058-L1067.

    CAS  Google Scholar 

  29. Rajagopalan S, Laursen JB, Borthayre A, et al.: Role for endothelin-1 in angiotensin II-mediated hypertension. Hypertension 1997, 30:29–34.

    PubMed  CAS  Google Scholar 

  30. Schiffrin EL: The angiotensin-endothelin relationship: does it play a role in cardiovascular and renal pathophysiology? J Hypertens 2003, 21:2245–2247.

    Article  PubMed  CAS  Google Scholar 

  31. Harada E, Yoshimura M, Yasue H, et al.: Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. Circulation 2001, 104:137–139.

    PubMed  CAS  Google Scholar 

  32. Schiffrin EL, Gutkowska J, Genest J: Effect of angiotensin II on deoxycorticosterone infusion on vascular angiotensin II receptors in rats. Am J Physiol Heart Circ Physiol 1984, 246:H608-H614.

    CAS  Google Scholar 

  33. Schiffrin EL: Effects of aldosterone on the vasculature. Hypertension 2006, 47:312–318. A comprehensive and updated review on the effects of aldosterone on the cardiovascular system in several experimental models and in humans.

    Article  PubMed  CAS  Google Scholar 

  34. Garnier A, Bendall JK, Fuchs S, et al.: Cardiac-specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase transgenic mice. Circulation 2004, 110:1819–1825.

    Article  PubMed  CAS  Google Scholar 

  35. Virdis A, Neves MF, Amiri F, et al.: Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 2002, 40:504–510.

    Article  PubMed  CAS  Google Scholar 

  36. Blanco-Rivero J, Cachofeiro V, Lahera V, et al.: Participation of prostacyclin in endothelial dysfunction induced by aldosterone in normotensive and hypertensive rats. Hypertension 2005, 46:107–112.

    Article  PubMed  CAS  Google Scholar 

  37. Oberleithner H: Aldosterone makes human endothelium stiff and vulnerable. Kidney Int 2005, 67:1680–1682. An intriguing new evidence on the role of aldosterone in endothelial dysfunction.

    Article  PubMed  CAS  Google Scholar 

  38. Henriksen EJ: Selective angiotensin II receptor antagonism reduces insulin resistance in obese Zucker rats. Hypertension 2001, 38:884–890.

    PubMed  CAS  Google Scholar 

  39. Shinozaki K, Ayajiki K, Nishio Y, et al.: Evidence for a causal role of the renin-angiotensin system in vascular dysfunction associated with insulin resistance. Hypertension 2004, 43:255–262.

    Article  PubMed  CAS  Google Scholar 

  40. Clozel M, Kuhn H, Hefti F: Effects of angiotensin converting enzyme inhibitors and hydralazine on endothelial function in hypertensive rats. Hypertension 1990, 16:532–540.

    PubMed  CAS  Google Scholar 

  41. Shari AM, Li JF, Endemann D, Schiffrin EL: Effects of enalapril and amlodipine on small-artery structure and composition, and on endothelial dysfunction in spontaneously hypertensive rats. J Hypertens 1998, 16:457–466.

    Article  Google Scholar 

  42. Hayakawa H, Coffee K, Raij L: Endothelial dysfunction and cardiorenal injury in experimental salt-sensitive hypertension: effect of antihypertensive therapy. Circulation 1997, 96:2407–2413.

    PubMed  CAS  Google Scholar 

  43. Schiffrin EL, Deng LY, Larochelle P: Effect of a beta-blocker or a converting enzyme inhibitor on resistance arteries in essential hypertension. Hypertension 1994, 23:83–91.

    PubMed  CAS  Google Scholar 

  44. Schiffrin EL, Deng LY, Larochelle P: Progressive improvement in the structure of resistance arteries of hypertensive patients after 2 years of treatment with an angiotensin I-converting enzyme inhibitor: comparison with effects of a beta-blocker. Am J Hypertens 1995, 8:229–236.

    Article  PubMed  CAS  Google Scholar 

  45. Schiffrin EL, Deng LY: Comparison of effects of angiotensin I-converting enzyme inhibition and beta-blockade for 2 years on function of small arteries from hypertensive patients. Hypertension 1995, 25:699–703.

    PubMed  CAS  Google Scholar 

  46. Thybo NK, Stephens N, Cooper A, et al.: Effect of antihypertensive treatment on small arteries of patients with previously untreated essential hypertension. Hypertension 1995, 25(Pt 1):474–481.

    PubMed  CAS  Google Scholar 

  47. Rizzoni D, Muiesan ML, Porteri E, et al.: Effects of long-term antihypertensive treatment with lisinopril on resistance arteries in hypertensive patients with left ventricular hypertrophy. J Hypertens 1997, 15:197–204.

    Article  PubMed  CAS  Google Scholar 

  48. Antony I, Lerebours G, Nitemberg A: Angiotensin converting enzyme inhibition restores flow-dependent and cold pressor test-induced dilations in coronary arteries of hypertensive patients. Circulation 1996, 94:3115–3122.

    PubMed  CAS  Google Scholar 

  49. Taddei S, Virdis A, Ghiadoni L, et al.: Effects of angiotensin converting enzyme inhibition on endothelium-dependent vasodilatation in essential hypertensive patients. J Hypertens 1998, 16:447–456.

    Article  PubMed  CAS  Google Scholar 

  50. Rizzoni D, Porteri E, De Ciuceis C, et al.: Effect of treatment with candesartan or enalapril on subcutaneous small artery structure in hypertensive patients with noninsulin-dependent diabetes mellitus. Hypertension 2005, 45:659–665.

    Article  PubMed  CAS  Google Scholar 

  51. Cosentino F, Savoia C, De Paolis P, et al.: Angiotensin II type 2 receptors contribute to vascular responses in spontaneously hypertensive rats treated with angiotensin II type 1 receptor antagonists. Am J Hypertens 2005, 18(4 Pt 1):493–499.

    Article  PubMed  CAS  Google Scholar 

  52. Malik RA, Schofield IJ, Izzard A, et al.: Effects of angiotensin type-1 receptor antagonism on small artery function in patients with type 2 diabetes mellitus. Hypertension 2005, 45:264–269.

    Article  PubMed  CAS  Google Scholar 

  53. Schiffrin EL, Park JB, Intengam HD, Touyz RM: Correction of arterial structure and endothelial dysfunction in humans essential hypertension by the angiotensin receptor antagonist losartan. Circulation 2000, 101:1653–1659.

    PubMed  CAS  Google Scholar 

  54. Schiffrin EL, Park JB, Pu Q: Effect of crossing over hypertensive patients from a beta-blocker to an angiotensin receptor antagonist on resistance artery structure and endothelial function. J Hypertens 2002, 20:71–78.

    Article  PubMed  CAS  Google Scholar 

  55. Lother H, Abdel-tawab AM, Quitterer U: The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 2001, 276:39721–39726.

    Article  PubMed  CAS  Google Scholar 

  56. Steckelings UM, Kaschina E, Unger T: The AT2 receptor. A matter of love or hate. Peptides 2005, 26:1401–1409.

    Article  PubMed  CAS  Google Scholar 

  57. Keidar S, Kaplam M, Pavlotzky E, et al.: Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: a possible role for angiotensin-converting enzyme and the receptors for angiotensin II and aldosterone. Circulation 2004, 109:2213–2220.

    Article  PubMed  CAS  Google Scholar 

  58. Takai S, Jin D, Muramatsu M, et al.: Eplerenone inhibits atherosclerosis in nonhuman primates. Hypertension 2005, 46:1135–1139.

    Article  PubMed  CAS  Google Scholar 

  59. Diep QN, Amiri F, Touyz R, et al.: PPAR alpha activator effects on Ang II-induced vascular oxidative stress and Inflammation. Hypertension 2002, 40:866–871.

    Article  PubMed  CAS  Google Scholar 

  60. Diep QN, El Mabrouk M, Cohn JS, et al.: Structure, endothelial function, cell growth, and Inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor-gamma. Circulation 2002, 105:2296–2302.

    Article  PubMed  CAS  Google Scholar 

  61. Schiffrin EL, Amiri F, Benkirane K, et al.: Peroxisome proliferator-activated receptors: vascular and cardiac effects in hypertension. Hypertension 2003, 42:664–668.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto L. Schiffrin MD, PhD, FRCPC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savoia, C., Schiffrin, E.L. Inhibition of the renin angiotensin system: Implications for the endothelium. Curr Diab Rep 6, 274–278 (2006). https://doi.org/10.1007/s11892-006-0060-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-006-0060-5

Keywords

Navigation