Skip to main content

Advertisement

Log in

The Etiology and Pathogenesis of Chronic Rhinosinusitis: a Review of Current Hypotheses

  • Rhinosinusitis (J Mullol, Section Editor)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

Chronic rhinosinusitis (CRS) is a broad clinical syndrome that is characterized by prolonged mucosal inflammation of the nose and paranasal sinuses, and is typically divided into two subtypes based on the presence or absence of nasal polyps. The etiology and pathogenesis of both forms remain areas of active research. Over the last 15 years, a number of hypotheses have been proposed to explain all or part of the clinical CRS spectrum. These hypotheses reflect the concept that CRS results from a dysfunctional interplay between individual host characteristics and factors exogenous to the host. Six broad theories on CRS etiology and pathogenesis are discussed as follows: (1) the “fungal hypothesis,” (2) the “superantigen hypothesis,” (3) the “biofilm hypothesis,” and (4) the “microbiome hypothesis,” all of which emphasize key environmental factors, and (5) the “eicosanoid hypothesis” and (6) the “immune barrier hypothesis,” which describe specific host factors. These theories are reviewed, and the evidence supporting them is critically appraised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fokkens WJ, Lund VJ, Mullol J et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol Suppl 2012:3 p preceding table of contents, 1-298. This is an updated and comprehensive reference document created by international collaboration that serves as the standard guideline for definitions, classifications, and diagnostic criteria for acute and chronic rhinosinusitis.

  2. Pleis JR, Lucas JW, Ward BW. Summary health statistics for U.S. adults: National Health Interview Survey, 2008. Vital Health Stat. 2009;10:1–157.

    Google Scholar 

  3. Jarvis D, Newson R, Lotvall J, et al. Asthma in adults and its association with chronic rhinosinusitis: the GA2LEN survey in Europe. Allergy. 2012;67:91–8.

    CAS  PubMed  Google Scholar 

  4. Lee S, Lane AP. Chronic rhinosinusitis as a multifactorial inflammatory disorder. Curr Infect Dis Rep. 2011;13:159–68.

    PubMed Central  PubMed  Google Scholar 

  5. Tan BK, Schleimer RP, Kern RC. Perspectives on the etiology of chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg. 2010;18:21–6.

    PubMed Central  PubMed  Google Scholar 

  6. Kern RC, Conley DB, Walsh W, et al. Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis. Am J Rhinol. 2008;22:549–59.

    PubMed Central  PubMed  Google Scholar 

  7. Van Crombruggen K, Zhang N, Gevaert P, et al. Pathogenesis of chronic rhinosinusitis: inflammation. J Allergy Clin Immunol. 2011;128:728–32.

    PubMed  Google Scholar 

  8. Akdis CA, Bachert C, Cingi C, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2013;131:1479–90. An international consensus report, this recent statement highlights the continued research endeavors to define CRS variants according to both clinical characteristics as phenotypes and also pathophysiologic mechanisms as endotypes.

    PubMed Central  PubMed  Google Scholar 

  9. Baroody FM, Mucha SM, Detineo M, Naclerio RM. Nasal challenge with allergen leads to maxillary sinus inflammation. J Allergy Clin Immunol. 2008;121:1126–32.

    CAS  PubMed  Google Scholar 

  10. Baroody FM, Mucha SM, de Tineo M, Naclerio RM. Evidence of maxillary sinus inflammation in seasonal allergic rhinitis. Otolaryngol Head Neck Surg : Off J Am Acad Otolaryngol Head Neck Surg. 2012;146:880–6.

    Google Scholar 

  11. Hulse KE, Norton JE, Suh L et al. Chronic rhinosinusitis with nasal polyps is characterized by B-cell inflammation and EBV-induced protein 2 expression. J Allergy Clinical Immunol 2013; 131:1075-1083, 1083 e1071-1077.

  12. Munoz DelCastillo F, Jurado-Ramos A, Fernandez-Conde BL, et al. Allergenic profile of nasal polyposis. J Investig Allergol Clin Immunol. 2009;19:110–6.

    CAS  Google Scholar 

  13. Pearlman AN, Chandra RK, Chang D, et al. Relationships between severity of chronic rhinosinusitis and nasal polyposis, asthma, and atopy. Am J Rhinol Allergy. 2009;23:145–8.

    PubMed Central  PubMed  Google Scholar 

  14. Robinson S, Douglas R, Wormald PJ. The relationship between atopy and chronic rhinosinusitis. Am J Rhinol. 2006;20:625–8.

    PubMed  Google Scholar 

  15. Sasama J, Sherris DA, Shin SH, et al. New paradigm for the roles of fungi and eosinophils in chronic rhinosinusitis. Curr Opin Otolaryngol Head Neck Surg. 2005;13:2–8.

    PubMed  Google Scholar 

  16. Davis LJ, Kita H. Pathogenesis of chronic rhinosinusitis: role of airborne fungi and bacteria. Immunol Allergy Clin N Am. 2004;24:59–73.

    Google Scholar 

  17. Ponikau JU, Sherris DA, Kern EB, et al. The diagnosis and incidence of allergic fungal sinusitis. Mayo Clin Proc. 1999;74:877–84.

    CAS  PubMed  Google Scholar 

  18. Braun H, Buzina W, Freudenschuss K, et al. ‘Eosinophilic fungal rhinosinusitis’: a common disorder in Europe? Laryngoscope. 2003;113:264–9.

    PubMed  Google Scholar 

  19. Shin SH, Ponikau JU, Sherris DA, et al. Chronic rhinosinusitis: an enhanced immune response to ubiquitous airborne fungi. J Allergy Clin Immunol. 2004;114:1369–75.

    CAS  PubMed  Google Scholar 

  20. Wei JL, Kita H, Sherris DA, et al. The chemotactic behavior of eosinophils in patients with chronic rhinosinusitis. Laryngoscope. 2003;113:303–6.

    PubMed  Google Scholar 

  21. Inoue Y, Matsuwaki Y, Shin SH, et al. Nonpathogenic, environmental fungi induce activation and degranulation of human eosinophils. J Immunol. 2005;175:5439–47.

    CAS  PubMed  Google Scholar 

  22. Douglas R, Bruhn M, Tan LW, et al. Response of peripheral blood lymphocytes to fungal extracts and staphylococcal superantigen B in chronic rhinosinusitis. Laryngoscope. 2007;117:411–4.

    PubMed  Google Scholar 

  23. Orlandi RR, Marple BF, Georgelas A et al. Immunologic response to fungus is not universally associated with rhinosinusitis. Otolaryngol--Head Neck Surg : Off J Am Acad Otolaryngol-Head Neck Surg 2009; 141:750-756 e751-752.

  24. Ebbens FA, Scadding GK, Badia L, et al. Amphotericin B nasal lavages: not a solution for patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2006;118:1149–56.

    CAS  PubMed  Google Scholar 

  25. Ebbens FA, Fokkens WJ. The mold conundrum in chronic rhinosinusitis: where do we stand today? Curr Allergy Asthma Rep. 2008;8:93–101.

    CAS  PubMed  Google Scholar 

  26. Ebbens FA, Georgalas C, Luiten S, et al. The effect of topical amphotericin B on inflammatory markers in patients with chronic rhinosinusitis: a multicenter randomized controlled study. Laryngoscope. 2009;119:401–8.

    CAS  PubMed  Google Scholar 

  27. Shin SH, Lee SH, Jeong HS, Kita H. The effect of nasal polyp epithelial cells on eosinophil activation. Laryngoscope. 2003;113:1374–7.

    PubMed  Google Scholar 

  28. Shin SH, Lee YH, Jeon CH. Protease-dependent activation of nasal polyp epithelial cells by airborne fungi leads to migration of eosinophils and neutrophils. Acta Otolaryngol. 2006;126:1286–94.

    CAS  PubMed  Google Scholar 

  29. Rudack C, Steinhoff M, Mooren F, et al. PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium. Clin Exp Allergy : J Br Soc Allergy Clin Immunol. 2007;37:1009–22.

    CAS  Google Scholar 

  30. Matsuwaki Y, Wada K, White T, et al. Alternaria fungus induces the production of GM-CSF, interleukin-6 and interleukin-8 and calcium signaling in human airway epithelium through protease-activated receptor 2. Int Arch Allergy Immunol. 2012;158 Suppl 1:19–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Bhushan B, Homma T, Norton JE et al. Suppression of epithelial STAT1 activation by extracts of Aspergillus fumigatus. Am J Respir Cell Mol Biol 2014.

  32. Ryan MW. Allergic fungal rhinosinusitis. Otolaryngol Clin N Am. 2011;44:697–710.

    Google Scholar 

  33. Lee CG, Da Silva CA, Dela Cruz CS, et al. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol. 2011;73:479–501.

    CAS  PubMed  Google Scholar 

  34. Zhu Z, Zheng T, Homer RJ, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–82.

    CAS  PubMed  Google Scholar 

  35. Ramanathan Jr M, Lee WK, Lane AP. Increased expression of acidic mammalian chitinase in chronic rhinosinusitis with nasal polyps. Am J Rhinol. 2006;20:330–5.

    PubMed  Google Scholar 

  36. Feazel LM, Frank DN, Ramakrishnan VR. Update on bacterial detection methods in chronic rhinosinusitis: implications for clinicians and research scientists. Int Forum Allergy Rhinol. 2011;1:451–9.

    PubMed  Google Scholar 

  37. Feazel LM, Robertson CE, Ramakrishnan VR, Frank DN. Microbiome complexity and Staphylococcus aureus in chronic rhinosinusitis. Laryngoscope. 2012;122:467–72. This cross-sectional observational study demonstrates the utility of DNA pyrosequencing in complementing culture analysis in better understanding the biodiversity of the intranasal microbiota.

    PubMed Central  PubMed  Google Scholar 

  38. Brook I. The role of bacteria in chronic rhinosinusitis. Otolaryngol Clin N Am. 2005;38:1171–92.

    Google Scholar 

  39. Larson DA, Han JK. Microbiology of sinusitis: does allergy or endoscopic sinus surgery affect the microbiologic flora? Curr Opin Otolaryngol Head Neck Surg. 2011;19:199–203.

    PubMed  Google Scholar 

  40. Corriveau MN, Zhang N, Holtappels G, et al. Detection of Staphylococcus aureus in nasal tissue with peptide nucleic acid-fluorescence in situ hybridization. Am J Rhinol Allergy. 2009;23:461–5.

    PubMed  Google Scholar 

  41. Sachse F, Becker K, von Eiff C, et al. Staphylococcus aureus invades the epithelium in nasal polyposis and induces IL-6 in nasal epithelial cells in vitro. Allergy. 2010;65:1430–7.

    CAS  PubMed  Google Scholar 

  42. Tan NC, Foreman A, Jardeleza C, et al. Intracellular Staphylococcus aureus: the Trojan horse of recalcitrant chronic rhinosinusitis? Int Forum Allergy Rhinol. 2013;3:261–6.

    PubMed  Google Scholar 

  43. Bachert C, Gevaert P, Holtappels G, et al. Total and specific IgE in nasal polyps is related to local eosinophilic inflammation. J Allergy Clin Immunol. 2001;107:607–14.

    CAS  PubMed  Google Scholar 

  44. Bachert C, Zhang N, Patou J, et al. Role of staphylococcal superantigens in upper airway disease. Curr Opin Allergy Clin Immunol. 2008;8:34–8.

    CAS  PubMed  Google Scholar 

  45. Van Zele T, Gevaert P, Watelet JB, et al. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol. 2004;114:981–3.

    PubMed  Google Scholar 

  46. Ramakrishnan VR, Feazel LM, Abrass LJ, Frank DN. Prevalence and abundance of Staphylococcus aureus in the middle meatus of patients with chronic rhinosinusitis, nasal polyps, and asthma. Int Forum Allergy Rhinol. 2013;3:267–71.

    PubMed  Google Scholar 

  47. Seiberling KA, Conley DB, Tripathi A, et al. Superantigens and chronic rhinosinusitis: detection of staphylococcal exotoxins in nasal polyps. Laryngoscope. 2005;115:1580–5.

    PubMed  Google Scholar 

  48. Seiberling KA, Grammer L, Kern RC. Chronic rhinosinusitis and superantigens. Otolaryngol Clin N Am. 2005;38:1215–36.

    Google Scholar 

  49. Bernstein JM, Ballow M, Schlievert PM, et al. A superantigen hypothesis for the pathogenesis of chronic hyperplastic sinusitis with massive nasal polyposis. Am J Rhinol. 2003;17:321–6.

    PubMed  Google Scholar 

  50. Conley DB, Tripathi A, Seiberling KA, et al. Superantigens and chronic rhinosinusitis: skewing of T-cell receptor V beta-distributions in polyp-derived CD4+ and CD8+ T cells. Am J Rhinol. 2006;20:534–9.

    PubMed Central  PubMed  Google Scholar 

  51. Conley DB, Tripathi A, Seiberling KA, et al. Superantigens and chronic rhinosinusitis II: analysis of T-cell receptor V beta domains in nasal polyps. Am J Rhinol. 2006;20:451–5.

    PubMed  Google Scholar 

  52. Tripathi A, Conley DB, Grammer LC, et al. Immunoglobulin E to staphylococcal and streptococcal toxins in patients with chronic sinusitis/nasal polyposis. Laryngoscope. 2004;114:1822–6.

    CAS  PubMed  Google Scholar 

  53. Wang M, Shi P, Yue Z, et al. Superantigens and the expression of T-cell receptor repertoire in chronic rhinosinusitis with nasal polyps. Acta Otolaryngol. 2008;128:901–8.

    CAS  PubMed  Google Scholar 

  54. Patou J, Gevaert P, Van Zele T, et al. Staphylococcus aureus enterotoxin B, protein A, and lipoteichoic acid stimulations in nasal polyps. J Allergy Clin Immunol. 2008;121:110–5.

    CAS  PubMed  Google Scholar 

  55. Perez Novo CA, Jedrzejczak-Czechowicz M, Lewandowska-Polak A, et al. T cell inflammatory response, Foxp3 and TNFRS18-L regulation of peripheral blood mononuclear cells from patients with nasal polyps-asthma after staphylococcal superantigen stimulation. Clin Exp Allergy : J Br Soc Allergy Clin Immunol. 2010;40:1323–32.

    CAS  Google Scholar 

  56. Langier S, Landsberg R, Sade K, Kivity S. Anti-IL-5 immunomodulates the effect of Staphylococcus aureus enterotoxin on T cell response in nasal polyps. Rhinology. 2011;49:570–6.

    CAS  PubMed  Google Scholar 

  57. Post JC, Hiller NL, Nistico L, et al. The role of biofilms in otolaryngologic infections: update 2007. Curr Opin Otolaryngol Head Neck Surg. 2007;15:347–51.

    PubMed  Google Scholar 

  58. Sanderson AR, Leid JG, Hunsaker D. Bacterial biofilms on the sinus mucosa of human subjects with chronic rhinosinusitis. Laryngoscope. 2006;116:1121–6.

    PubMed  Google Scholar 

  59. Suh JD, Ramakrishnan V, Palmer JN. Biofilms. Otolaryngol Clin N Am. 2010;43:521–30.

    Google Scholar 

  60. Sanclement JA, Webster P, Thomas J, Ramadan HH. Bacterial biofilms in surgical specimens of patients with chronic rhinosinusitis. Laryngoscope. 2005;115:578–82.

    PubMed  Google Scholar 

  61. Calo L, Passali GC, Galli J, et al. Role of biofilms in chronic inflammatory diseases of the upper airways. Adv Otorhinolaryngol. 2011;72:93–6.

    CAS  PubMed  Google Scholar 

  62. Foreman A, Holtappels G, Psaltis AJ, et al. Adaptive immune responses in Staphylococcus aureus biofilm-associated chronic rhinosinusitis. Allergy. 2011;66:1449–56.

    CAS  PubMed  Google Scholar 

  63. Foreman A, Jervis-Bardy J, Wormald PJ. Do biofilms contribute to the initiation and recalcitrance of chronic rhinosinusitis? Laryngoscope. 2011;121:1085–91.

    PubMed  Google Scholar 

  64. Boase S, Foreman A, Cleland E, et al. The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection. BMC Infect Dis. 2013;13:210.

    PubMed Central  PubMed  Google Scholar 

  65. Abreu NA, Nagalingam NA, Song Y, et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med. 2012;4:151ra124.

    PubMed  Google Scholar 

  66. Lawley TD, Clare S, Walker AW, et al. Antibiotic treatment of clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun. 2009;77:3661–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Dorrestein PC, Mazmanian SK, Knight R. Finding the missing links among metabolites, microbes, and the host. Immunity. 2014;40:824–32.

    CAS  PubMed  Google Scholar 

  68. Gallo RL. S. epidermidis influence on host immunity: more than skin deep. Cell Host Microbe. 2015;17:143–4. This review summarizes research regarding the interactions among microbes, microbial metabolites, and the human immune system are relatively well developed in gastrointestinal diseases and provides new perspectives on potential research paradigms for deciphering the CRS puzzle.

    CAS  PubMed  Google Scholar 

  69. Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2012;9:88–96.

    CAS  Google Scholar 

  70. Yan M, Pamp SJ, Fukuyama J, et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe. 2013;14:631–40. This is an observational study that demonstrates that the indigenous intranasal microbiota likely varies according to locations within the nose and according to carrier status of Staphylococcus aureus.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Ianiro G, Bibbo S, Scaldaferri F, et al. Fecal microbiota transplantation in inflammatory bowel disease: beyond the excitement. Medicine. 2014;93, e97.

    PubMed  Google Scholar 

  72. Roca-Ferrer J, Garcia-Garcia FJ, Pereda J, et al. Reduced expression of COXs and production of prostaglandin E(2) in patients with nasal polyps with or without aspirin-intolerant asthma. J Allergy Clin Immunol. 2011;128:66–72.

    CAS  PubMed  Google Scholar 

  73. Perez-Novo CA, Waeytens A, Claeys C, et al. Staphylococcus aureus enterotoxin B regulates prostaglandin E2 synthesis, growth, and migration in nasal tissue fibroblasts. J Infect Dis. 2008;197:1036–43.

    CAS  PubMed  Google Scholar 

  74. Okano M, Fujiwara T, Haruna T, et al. Prostaglandin E(2) suppresses staphylococcal enterotoxin-induced eosinophilia-associated cellular responses dominantly through an E-prostanoid 2-mediated pathway in nasal polyps. J Allergy Clin Immunol. 2009;123:868–74.

    CAS  PubMed  Google Scholar 

  75. Wang X, Moylan B, Leopold DA, et al. Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA. 2000;284:1814–9.

    CAS  PubMed  Google Scholar 

  76. Wang X, Kim J, McWilliams R, Cutting GR. Increased prevalence of chronic rhinosinusitis in carriers of a cystic fibrosis mutation. Arch Otolaryngol Head Neck Surg. 2005;131:237–40.

    PubMed  Google Scholar 

  77. Antunes MB, Gudis DA, Cohen NA. Epithelium, cilia, and mucus: their importance in chronic rhinosinusitis. Immunol Allergy Clin N Am. 2009;29:631–43.

    Google Scholar 

  78. Chen B, Antunes MB, Claire SE, et al. Reversal of chronic rhinosinusitis-associated sinonasal ciliary dysfunction. Am J Rhinol. 2007;21:346–53.

    PubMed  Google Scholar 

  79. Zuckerman JD, Lee WY, DelGaudio JM, et al. Pathophysiology of nasal polyposis: the role of desmosomal junctions. Am J Rhinol. 2008;22:589–97.

    PubMed  Google Scholar 

  80. Rogers GA, Den Beste K, Parkos CA, et al. Epithelial tight junction alterations in nasal polyposis. Int Forum Allergy Rhinol. 2011;1:50–4.

    PubMed  Google Scholar 

  81. Richer SL, Truong-Tran AQ, Conley DB, et al. Epithelial genes in chronic rhinosinusitis with and without nasal polyps. Am J Rhinol. 2008;22:228–34.

    PubMed Central  PubMed  Google Scholar 

  82. Soyka MB, Wawrzyniak P, Eiwegger T, et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol. 2012;130:1087–96.

    CAS  PubMed  Google Scholar 

  83. Den Beste KA, Hoddeson EK, Parkos CA, et al. Epithelial permeability alterations in an in vitro air-liquid interface model of allergic fungal rhinosinusitis. Int Forum Allergy Rhinol. 2013;3:19–25.

    Google Scholar 

  84. Pothoven KL, Norton JE, Hulse KE et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J Allergy Clin Immunol 2015.

  85. Seshadri S, Rosati M, Lin DC, et al. Regional differences in the expression of innate host defense molecules in sinonasal mucosa. J Allergy Clin Immunol. 2013;132:1227–30.

    CAS  PubMed  Google Scholar 

  86. Psaltis AJ, Bruhn MA, Ooi EH, et al. Nasal mucosa expression of lactoferrin in patients with chronic rhinosinusitis. Laryngoscope. 2007;117:2030–5.

    CAS  PubMed  Google Scholar 

  87. Tieu DD, Peters AT, Carter RG, et al. Evidence for diminished levels of epithelial psoriasin and calprotectin in chronic rhinosinusitis. J Allergy Clin Immunol. 2010;125:667–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Meyer JE, Harder J, Sipos B, et al. Psoriasin (S100A7) is a principal antimicrobial peptide of the human tongue. Mucosal Immunol. 2008;1:239–43.

    CAS  PubMed  Google Scholar 

  89. Seshadri S, Lin DC, Rosati M, et al. Reduced expression of antimicrobial PLUNC proteins in nasal polyp tissues of patients with chronic rhinosinusitis. Allergy. 2012;67:920–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Lee RJ, Kofonow JM, Rosen PL, et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest. 2014;124:1393–405.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Wolk K, Kunz S, Witte E, et al. IL-22 increases the innate immunity of tissues. Immunity. 2004;21:241–54.

    CAS  PubMed  Google Scholar 

  92. Wolk K, Witte E, Wallace E, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur J Immunol. 2006;36:1309–23.

    CAS  PubMed  Google Scholar 

  93. Pickert G, Neufert C, Leppkes M, et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med. 2009;206:1465–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Aujla SJ, Chan YR, Zheng M, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med. 2008;14:275–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Ramanathan Jr M, Spannhake EW, Lane AP. Chronic rhinosinusitis with nasal polyps is associated with decreased expression of mucosal interleukin 22 receptor. Laryngoscope. 2007;117:1839–43.

    CAS  PubMed  Google Scholar 

  96. Hulse KE, Chaung K, Seshadri S, et al. Suppressor of cytokine signaling 3 expression is diminished in sinonasal tissues from patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2014;133:275–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Derycke L, Eyerich S, Van Crombruggen K, et al. Mixed T helper cell signatures in chronic rhinosinusitis with and without polyps. PLoS ONE. 2014;9:e97581. T cell cytokine patterns in control patients, CRSsNP, and CRSwNP are highlighted in this observational study.

    PubMed Central  PubMed  Google Scholar 

  98. Nagarkar DR, Poposki JA, Tan BK, et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2013;132:593–600. This studies identifies TSLP as a key epitelial cytokine drivin Type 2 responses in CRSwNP.

  99. Shaw JL, Fakhri S, Citardi MJ, et al. IL-33-responsive innate lymphoid cells are an important source of IL-13 in chronic rhinosinusitis with nasal polyps. Am J Respir Crit Care Med. 2013;188:432–9.

    CAS  PubMed  Google Scholar 

  100. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517:293–301. This is a detailed review of constituents of the innate immune system that collaborate with each other, the adaptive immune system, and with non-hematopoietic cell types to not only promote immune responses, but also induce inflammation and tissue remodeling.

    CAS  PubMed  Google Scholar 

  101. Allakhverdi Z, Comeau MR, Smith DE, et al. CD34+ hemopoietic progenitor cells are potent effectors of allergic inflammation. J Allergy Clin Immunol. 2009;123:472–8.

    CAS  PubMed  Google Scholar 

  102. Mjosberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12:1055–62.

    PubMed  Google Scholar 

  103. Kato A, Peters A, Suh L et al. Evidence of a role for B cell-activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. The Journal of allergy and clinical immunology 2008; 121:1385-1392, 1392 e1381-1382.

  104. Tan BK, Li QZ, Suh L, et al. Evidence for intranasal antinuclear autoantibodies in patients with chronic rhinosinusitis with nasal polyps. JAllergy Clin Immunol. 2011;128:1198–206.

    CAS  Google Scholar 

  105. Van Zele T, Gevaert P, Holtappels G, et al. Local immunoglobulin production in nasal polyposis is modulated by superantigens. Clin Exp Allergy : J Br Soc Allergy Clin Immunol. 2007;37:1840–7.

    Google Scholar 

  106. Kato A, Hulse KE, Tan BK, Schleimer RP. B-lymphocyte lineage cells and the respiratory system. The Journal of allergy and clinical immunology 2013; 131:933-957; quiz 958

  107. Hulse KE, Stevens WW, Tan BK, Schleimer RP. Pathogenesis of nasal polyposis. Clin Exp Allergy : J Br Soc Allergy Clin Immunol. 2015;45:328–46. This review on the various etiologies of CRSwNP provides detailed summaries of the different cytokines and chemokines implicated in the pathogenesis of nasal polyposis.

    CAS  Google Scholar 

  108. Chandra RK, Lin D, Tan B, et al. Chronic rhinosinusitis in the setting of other chronic inflammatory diseases. Am J Otolaryngol. 2011;32:388–91.

    PubMed Central  PubMed  Google Scholar 

  109. Tan BK, Chandra RK, Pollak J, et al. Incidence and associated premorbid diagnoses of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2013;131:1350–60.

    PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Robert Schleimer reports grants from NIH and personal fees from Intersect ENT, GlaxoSmithKline, Allakos, Aurasense, Merck, BioMarck, and Sanofi. In addition, Dr. Schleimer has a patent on Siglec-8 and Siglec-8 ligand-related patents licensed to Allakos. Kent Lam and Robert C. Kern declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Research Funding

The study was supported by the Chronic Rhinosinusitis Integrative Studies Program (CRISP) U19-AI106683.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Kern.

Additional information

This article is part of the Topical Collection on Rhinosinusitis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, K., Schleimer, R. & Kern, R.C. The Etiology and Pathogenesis of Chronic Rhinosinusitis: a Review of Current Hypotheses. Curr Allergy Asthma Rep 15, 41 (2015). https://doi.org/10.1007/s11882-015-0540-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-015-0540-2

Keywords

Navigation