Skip to main content

Advertisement

Log in

State-of-the-Art Segmentation Techniques and Future Directions for Multiple Sclerosis Brain Lesions

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Manual segmentation of multiple sclerosis (MS) in brain imaging is a challenging task due to intra and inter-observer variability resulting in poor reproducibility. To overcome the limitations of manual assessment various automatic segmentation techniques has been proposed in the literature. This paper presents the systematic review of the literature in automated multiple sclerosis lesion segmentation, the lesions complexity and classification of various existing automated methods. A comparative analysis of the various MS segmentation techniques is also presented and future directions are identified to carry out research work further in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Roy S, Bhattacharyya D, Bandyopadhyay SK, Kim TH (2017) An effective method for computerized prediction and segmentation of multiple sclerosis lesions in brain MRI. Comput Methods Prog Biomed 140:307–320

    Google Scholar 

  2. Alshayeji MH, Al-Rousan M, Ellethy H (2017) An efficient multiple sclerosis segmentation and detection system using neural networks. Comput Electr Eng 71:191–205

    Google Scholar 

  3. Zhao Y, Guo S, Luo M, Shi X, Bilello M, Zhang S, Li S (2017) A level set method for multiple sclerosis lesion segmentation. Magn Reson Imaging 49:94–100

    Google Scholar 

  4. Aslani S, Dayan M, Storelli L, Filippi M, Murino V, Rocca MA, Sona D (2018) Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. NeuroImage 196:1–15

    Google Scholar 

  5. Birenbaum A, Greenspan H (2017) Multi-view longitudinal CNultiple sclerosis lesion segmentation. Eng Appl Artif Intell 65:111–118

    Google Scholar 

  6. Garcia-Lorenzo D, Francis S, Narayanan S, Arnold DL, Collins DL (2013) Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal 17(1):1–18

    Google Scholar 

  7. Rosa FL, Fartaria MJ, Kober T, Richiardi J, Granziera C, Thiran JP, Cuadra MB (2018) Shallow vs. deep learning architectures for white matter lesion segmentation in the early stages of multiple sclerosis. In: International MICCAI workshop on BrainLesion: glioma, multiple sclerosis, stroke and traumatic brain injuries. Lecture notes in computer science (LNCS), vol 113. Springer, Cham, pp 142–151

  8. Llado X, Oliver A, Cabezas M, Freixenet J, Vilanova JC, Quiles A, Valls L, Ramio-Torrenta L, Rovira A (2012) Segmentation of multiple sclerosis lesions in brain MRI: a review of automated approaches. Inf Sci 186:164–185

    Google Scholar 

  9. Jiji GW (2015) Analysis of lesions in multiple sclerosis using image processing techniques. Int J Biomed Eng Technol 19(2):118–132

    Google Scholar 

  10. Mortazavi D, Kouzani AZ, Zadeh HS (2012) Segmentation of multiple sclerosis lesions in MR images: a review. Diagn Neuroradil 54(4):299–320

    Google Scholar 

  11. Adams AL, Morgan MR, Lindsey WT (2014) Multiple sclerosis: a review and treatment option updates. Alabama pharmacy association. www.aprax.org

  12. Aruru MV, Warren J (2019) Multiple sclerosis in India—drivers of access and affordability. MOJ Public Health 8(1):1–6

    Google Scholar 

  13. Valverde S, Salem M, Cabezas M, Pareto D, Vilanova JC, Torrenta LR et al (2019) One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. Neuroimage Clin 21:1–13

    Google Scholar 

  14. Karimaghaloo Z, Shah M, Francis SJ, Arnold DL, Collins DL, Arbel T (2012) Automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI using conditional random fields. IEEE Trans Med Imaging 31(6):1181–1194

    Google Scholar 

  15. Brosch T, Yoo Y, Tang LYW, Li DKB, Traboulsee A, Tam R (2015) Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: International conference on medical image computing and computer-assisted intervention—MICCAI. Lecture notes in computer science, vol 935. Springer, Cham, pp 3–11

  16. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517

    Google Scholar 

  17. Biediger D, Collet C, Armspach JP (2014) Multiple sclerosis lesion detection with local multimodal markovian analysis and cellular automata. J Comput Surg 1(1):1–15

    Google Scholar 

  18. Denalakis A, Theoharis T, Verganelakis DA (2018) Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Comput Med Imaging Graph 70:83–100

    Google Scholar 

  19. Tomas-Fernandez X, Warfield SK (2015) A model of population and subject (MOPS) intensities with application to multiple sclerosis brain lesion segmentation. IEEE Trans Med Imaging 34(6):1349–1361

    Google Scholar 

  20. Elliott C, Arnold DL, Collins DL, Arbel T (2013) Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI. IEEE Trans Med Imaging 32(8):1490–1503

    Google Scholar 

  21. Jain S, Sima DM, Ribbens A, Cambron M, Maertens A, Van Hecke W, Smeets D (2015) Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. NeuroImage Clin 8:367–375

    Google Scholar 

  22. Strumia M, Schmidt F, Anastasopoulos C, Granziera C, Krueger G, Brox T (2016) White matter MS-lesion segmentation using a geometric brain model. IEEE Trans Med Imaging 35(7):1636–1646

    Google Scholar 

  23. Roy S, Butman JA, Reich D, Calabresi PA, Pham DL (2018) Multiple sclerosis lesion segmentation from brain MRI via fully convolutional neural networks. Computer vision and pattern recognition. arXiv:1803.09172

  24. Peyvandi M, Pouyan AA (2015) Automatic segmentation of multiple sclerosis lesions in brain MR images. J Biomed Eng Med Imaging (JBEMi) 2(5):22–34

    Google Scholar 

  25. Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L, Rovira A, Sastre-Garriga J, Tintorè M, Frederiksen JL, Gasperini C, Palace J, Reich DS, Banwell B, Montalban X, Barkhof F (2016) MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol 15(3):292–303

    Google Scholar 

  26. Chopra JS, RadhaKrishnan K, Sawhney BB, Pal SR, Banerjee AK (1980) Multiple sclerosis in north-west India. Acta Neurol Scand 62:312–321

    Google Scholar 

  27. Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Pham DL (2017) Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage 148:77–102

    Google Scholar 

  28. Neema M, Dandamudi V, Arora A, Stankiewicz J, Bakhshi R (2007) T1 black holes and gray matter damage. Neurodegeneration in multiple sclerosis. Topics in neuroscience. Springer, Milan, pp 37–45

    Google Scholar 

  29. Sima DM, Loeckx D, Smeets D, Jain S, Parizel PM, Hecke WV (2017) Use case I: imaging biomarkers in neurological disease. Focus on multiple sclerosis. In: Martí-Bonmatí L, Alberich-Bayarri A (eds) Imaging biomarkers. Springer, Berlin, pp 169–180

    Google Scholar 

  30. Karimaghaloo Z, Rivaz H, Arnold DL, Collins DL, Arbel T (2015) Temporal hierarchical adaptive texture CRF for automatic detection of gadolinium-enhancing multiple sclerosis lesions in brain MRI. IEEE Trans Med Imaging 34(6):1227–1241

    Google Scholar 

  31. Datta S, Sajja BR, He R, Wolinsky JS, Gupta RK, Narayana PA (2006) Segmentation and quantification of black holes in multiple sclerosis. NeuroImage 29(2):467–474

    Google Scholar 

  32. https://www.msdiscovery.org/map-of-MS-prevalence

  33. Weinshenker BG, Bass B, Rice GPA, Noseworthy J, Carriere Baskerville J, Ebers GC (1989) The natural history of multiple sclerosis: a geographically based study. Brain 112(1):133–146

    Google Scholar 

  34. Schaeffer J, Cossetti C, Mallucci G, Pluchino S (2015) Multiple sclerosis. Neurobiol Brain Disord 84:497–520

    Google Scholar 

  35. Singhal BS, Advani H (2015) Multiple sclerosis in India: an overview. Ann Indian Acad Neurol 8(5):2–5. https://doi.org/10.4103/0972-2327.164812

    Article  Google Scholar 

  36. Singh H, Gupta VK (1964) Multiple sclerosis (clinical study of sixteen cases). J Assoc Phys India 12(293):297 PMID:14137607

    Google Scholar 

  37. Singhal BS, Wadia NH (1975) Profile of multiple sclerosis in the bombay region. On the basis of critical clinical appraisal. J Neurol Sci 26:259–270

    Google Scholar 

  38. Wadia NH, Bhatia K (1990) Multiple sclerosis in prevalent in the zoroastrians (Parsis) of India. Ann Neurol 28:177–179

    Google Scholar 

  39. Jain S, Maheshwari MC (1985) Multiple sclerosis: Indian experience in the last thirty years. Neuroepidemiology 4(2):96–107

    Google Scholar 

  40. Singhal BS (1985) Multiple sclerosis—Indian experience. Ann Acad Med 14(1):32–36

    MathSciNet  Google Scholar 

  41. Gangopadhyay G, Das SK, Sarda P, Saha SP, Gangopadhyay P, Roy TN, Maity B (1999) Clinical profile of multiple sclerosis in Bengal. Neurol India 47(1):18–21

    Google Scholar 

  42. Syal P, Prabhakar S, Thussu A, Sehgal S, Khandelwal N (1999) Clinical profile of multiple sclerosis in north-west India. Neurol India 47(1):12–17

    Google Scholar 

  43. Pandit L, Kundapur R (2014) Prevalence and patterns of demyelinating central nervous system disorders in Urban Mangalore, South India. Mult Scler 20:1651–1653

    Google Scholar 

  44. Sarma GRK, Nagaraj DK (2005) Multiple sclerosis in South India. Ann Indian Acad Neurol 8:71–74

    Google Scholar 

  45. Jena SS, Alexander M, Aaron S, Mathew V, Thomas MM, Patil AK et al (2015) Natural history of multiple sclerosis from indian perspective: experience from a tertiary care hospital. Neurol India 63(6):866–873

    Google Scholar 

  46. Zahoor I, Asimi R, Haq E, Yousuf WI (2017) Demographic and clinical profile of multiple sclerosis in kashmir: a shart report. Mult Scler Relat Disod 13:103–106

    Google Scholar 

  47. Chinnadurai SA, Gandhiranjan D, Srinivasan AV, Kesavamurthy B, Ranganathan LN, Pamidimukkala V (2018) Predicting falls in multiple sclerosis: do electrophysiological measures have a better predictive accuracy compared to clinical measures. Mult Scler Relat Disord 20:199–203

    Google Scholar 

  48. https://www.nationalmssociety.org/

  49. Ghribi O, Njeh I, Zouch W, Mhiri C (2014) brief review of multiple sclerosis lesion segmentation methods on conventional MRI. In: 1st international conference on advance technologies for signal and image processing (ATSIP). IEEE, Sousse, pp 249–253

  50. Yoo Y, Brosch T, Traboulsee A, Li DKB, Tam R (2014) Deep learning of image features from unlabeled data for multiple sclerosis lesion segmentation. In: International workshop on machine learning in medical imaging (MLMI). Lecture notes in computer science (LNCS), vol 8679. Springer, Cham, pp 117–124

  51. Brosch T, Tang LYW, Yoo Y, Li DKB, Traboulsee A, Tam R (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229–1239

    Google Scholar 

  52. Commowick O, Wiest-Daessle N, Prima S (2012) Block-matching strategies for rigid registration of multimodal medical images. In: Proceedings—international symposium on biomedical imaging, pp 700–703

  53. Valverde S, Cabezasa M, Rouraa E, González-Villà Paretob D, Joan C, Vilanovac JC, Ramió-Torrentà L, Rovira A, Olivera A, Xavier Lladó X (2017) Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage 155:159–168

    Google Scholar 

  54. Vaidya S, Chunduru A, Muthuganapathy R, Krishnamurthi G (2015) Longitudinal multiple sclerosis lesion segmentation using 3D convolutional neural networks. In: International symposium on biomedical imaging, New York. https://pdfs.semanticscholar.org/5381/da6a2ec8b7a74b85f7ffcd4ea27a2c074ddf.pdf?_ga=2.171320547.276407026.1559123876-787352723.1559123876

  55. Roy S, He Q, Sweeney E, Carass A, Reich DS, Prince JL, Pham DL (2015) Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation. IEEE J Biomed Health Inf 19(5):1598–1609

    Google Scholar 

  56. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computer and computer-assisted intervention (MICCAI), Lecture notes in computer science (LNCS), vol 9351. Springer, Cham, pp 234–241

  57. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380

    Google Scholar 

  58. Han XH, Lei J, Chen YW (2016) Hep-2 cell classification using k-support spatial pooling in deep CNNS. In: International workshop on large-scale annotation of biomedical data and expert label synthesis (DLMIA), LABELS 2016. Lecture notes in computer science (LCNS), vol 10008. Springer, Cham, pp 3–11

  59. Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bendszus M, Biller A (2016) Deep MRI brain extraction: a 3D convolutional neural network for skull stripping. NeuroImage 129:460–469

    Google Scholar 

  60. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Google Scholar 

  61. Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251

    Google Scholar 

  62. Sadananthan SA, Zheng W, Chee MWL, Zagorodnov V (2010) Skull stripping using graph cuts. NeuroImage 49(1):225–239

    Google Scholar 

  63. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Google Scholar 

  64. Çiçek Ö, Abdulkadiret A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D u-net: learning dense volumetric segmentation from sparse annotation. In: International conference on medical image computing and computer assisted intervention (MICCAI). Lecture notes in computer science (LNCS), vol 9901. Springer, Cham, pp 424–432

  65. Chen Y, Shi B, Wang Z, Sun T, Smith CD, Liu J (2017) Accurate and consistent hippocampus segmentation through convolutional LSTM and view ensemble. In: Machine learning in medical imaging, pp 88–96

  66. Chen Y, Shi B, Wang Z, Zhang P, Smith CD, Liu J (2017) Hippocampus segmentation through multi-view ensemble convents. In: 14th international symposium on biomedical imaging (ISBI), Melbourne, pp 192–196

  67. Milletari F, Navab N, Ahmadi S A (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 4th international conference on 3D vision (3DV). IEEE, Stanford, pp 565–571

  68. Geremia E, Menze BH, Clatz O, Konukoglu E, Criminisi A, Ayache N (2011) Spatial decision forests for MS lesion segmentation in multi-channel MR images. NeuroImage 57:378–390

    Google Scholar 

  69. Jesson A, Arbel A (2015) Hierarchical MRF and random forest segmentation of MS lesions and healthy tissues in brain MRI. In: Proceedings of the 2015 longitudinal multiple sclerosis lesion segmentation challenge, pp 1–2

  70. Cabezas M, Oliver A, Valverde S, Beltran B, Feixenet J, Vilanova JC, Ramio-Torrenta L, Rovira A, Llado X (2014) BOOST: a supervised approach for multiple sclerosis lesion segmentation. J Neurosci Methods 237:108–117

    Google Scholar 

  71. Guizard N, Coupe P, Fonov VS, Manjon JV, Arnold DL, Collins DL (2015) Rotation-invariant multicontrast non-local means for MS lesion segmentation. NeuroImage Clin 8:376–389

    Google Scholar 

  72. Warfield S, Kaus M, Jolesz FA, Kikinis R (2000) Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1):43–55

    Google Scholar 

  73. Leemput KV, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908

    Google Scholar 

  74. Shiee N, Bazin PL, Ozturk A, Reich DS, Calabresi PA, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage 49(2):1524–1535

    Google Scholar 

  75. Zijdenbos AP, Forghani R, Evans A (2002) Automatic ‘pipeline’ analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21(10):1280–1291

    Google Scholar 

  76. Wu Y, Warfield S, Tan I, Wells WMIII, Meier D, van Schijndel R, Barkhof F, Guttmann C (2006) Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. NeuroImage 32:1205–1215

    Google Scholar 

  77. Younis A, Soliman A, Kabuka M, John N (2007) MS lesions detection in MRI using grouping artificial immune networks. In: Proceedings of the 7th IEEE international conference on bioinformatics and bioengineering (BIBE 2007), Boston, pp 1139–1146

  78. Wu A, Warfield SK, Tan IL, Wells W, Meier D, Schijndel RV, Barkhof F, Guttmann C (2006) Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. NeuroImage 32(3):1205–1215

    Google Scholar 

  79. Bricq S, Collet C, Armspach J (2008) Ms lesion segmentation based on hidden Markov chains. In: Grand challenge workshop on multiple sclerosis lesion segmentation challenge, pp 1–9

  80. Anbeek P, Vincken KL, Van Osch MJP, Bisschops RHC, Van Der Grond J (2004) Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage 21(3):1037–1044

    Google Scholar 

  81. Deshpande H, Maurel P, Barillot C (2015) Adaptive dictionary learning for competitive classification of multiple sclerosis lesions. In: IEEE 12th international symposium on biomedical imaging (ISBI), pp 136–139

  82. Van Schependom J, Jain S, Cambron M, Vanbinst AM, Mey JD, Smeets D, Nagels G (2016) Reliability of measuring regional callosal atrophy in neurodegenerative diseases. NeuroImage Clin 12:825–831

    Google Scholar 

  83. Karpate Y, Commowick O, Barillot C (2015) Probabilistic one class learning for automatic detection of multiple sclerosis lesions In: 12th IEEE international symposium on biomedical imaging (ISBI), New York, pp 486–489

  84. Dugas-Phocion G, Gonzalez MA, Lebrun C, Chanalet S, Bensa C, Malandain G, Ayache N (2004) Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI. In: 2nd international symposium on biomedical imaging (ISBI 2004), Arlington, pp 157–160

  85. Ferrari RJ, Wei X, Zhang Y, Scott JN, Mitchell JR (2003) Segmentation of multiple sclerosis lesions using support vector machines. In: Proceedings of SPIE medical imaging (SPIE-MI), San Diego, pp 16–26

  86. Geremia E, Menze BH, Clatz O, Konukoglu E, Criminisi A, Ayache N (2010) Spatial decision forests for MS lesion segmentation in multi-channel MR images. In: 13th international conference on med image comp and computer assisted interventions (MICCAI 2010). Springer, Berlin, pp 111–118

  87. Havaei M, Guizard N, Chapados N, Bengio Y (2016) HeMIS: hetero-modal image segmentation. In: 19th international conference on medical image computing and computer assisted intervention (MICCAI 2016). Springer, Berlin, pp 469–477

  88. Johnston B, Atkins MS, Mackiewich B, Anderson M (1996) Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans Med Imaging 15:154–169

    Google Scholar 

  89. Jog A, Carass A, Pham DL, Prince JL (2015) Multi-output decision trees for lesion segmentation in multiple sclerosis. In: Proceedings of SPIE medical imaging (SPIE-MI), Orlando, pp 94131C–94131C–6

  90. Kamber M, Shinghal R, Collins DL, Francis GS, Evans AC (1996) Modelbased 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images. IEEE Trans Med Imaging 14:442–453

    Google Scholar 

  91. Khayati R, Vafadust M, Towhidkhah F, Nabavi M (2008) Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model. Comput Biol Med 38:379–390

    Google Scholar 

  92. Rey D, Subsol G, Delingette H, Ayache N (2002) Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. Med Image Anal 6:163–179

    Google Scholar 

  93. Rey D, Subsol G, Delingette H, Ayache N (1999) Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. In: 16th international proceedings in medical imaging (IPMI 1999). Springer, Berlin, pp 154–167

  94. Roy S, Carass A, Shiee N, Pham DL, Prince JL (2010) MR contrast synthesis for lesion segmentation. In: 7th international symposium on biomedical imaging (ISBI 2010), Rotterdam, pp 932–935

  95. Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, Hoshi M, Ilg R, Schmid VJ, Zimmer C, Hemmer B, Mühlau M (2012) An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. NeuroImage 59:3774–3783

    Google Scholar 

  96. Subbanna N, Precup D, Arnold DL, Arbel T (2015) IMaGe: iterative multilevel probabilistic graphical model for detection and segmentation of multiple sclerosis lesions in brain MRI. In: 24th international conference on information processing in medical imaging (IPMI 2015). Springer, Berlin, pp 514–526

  97. Sudre CH, Cardoso MJ, Bouvy WH, Biessels GJ, Barnes J, Ourselin S (2015) Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation. IEEE Trans Med Imaging 34:2079–2102

    Google Scholar 

  98. Tomas-Fernandez X, Warfield SK (2011) A new classifier feature space for an improved multiple sclerosis lesion segmentation. In: 8th international symposium on biomedical imaging: from nano to macro (ISBI), Chicago, pp 1492–1495

  99. Weiss N, Rueckert D, Rao A (2013) Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. In: 16th international conference on medical image computing and computer assisted intervention (MICCAI 2013). Springer, Berlin, pp 735–742

  100. Beadnall HN, Wang C, Hecke WV, Ribbens A, Billiet T, Barnett MH (2019) Comparing brain atrophy measurement techniques in a real-world multiple sclerosis clinical practice cohort: towards clinical intergration? Ther Adv Neurol Disord 12:1756286418823462

    Google Scholar 

  101. Welti D, Gerig G, Radü EW, Kappos L, Székely G (2001) Spatio-temporal segmentation of active multiple sclerosis lesions in serial MRI data. In: 17th international conference in image processing and medical imagining (IPMI 2001). Springer, Berlin, pp 438–445

  102. Xie Y, Tao X (2011) White matter lesion segmentation using machine learning and weakly labeled MR images. In: Proceedings of SPIE medical imaging (SPIE-MI2011), Orlando, pp 79622G–79622G–9

  103. Harmouche R, Collins L, Arnold D, Francis S, Arbel T (2006) Bayesian MS lesion classification modeling regional and local spatial information. In: Proceedings of the 18th international conference on pattern recognition (ICPR), Hong Kong, pp 984–987

  104. Roura E, Oliver A, Cabezas M, Valverde S, Pareto D, Vilanova JC, Torrent LR, Rovira A, Llado X (2015) A toolbox for multiple sclerosis lesion segmentation. Neuroradiology 57(10):1031–1043

    Google Scholar 

  105. Aït-Ali L, Prima S, Hellier P, Carsin B, Edan G, Barillot C (2005) STREM: a robust multidimensional parametric method to segment MS lesions in MRI. In: Proceedings of the 8th international conference on medical image computing and computer assisted intervention (MICCAI). Lecture notes in computer science (LNCS), vol 3749. Springer, Berlin, pp 409–416

  106. García-Lorenzo D, Prima S, Collins D, Arnold D, Morrissey S, Barillot C (2008) Combining robust expectation maximization and mean shift algorithms for multiple sclerosis brain segmentation. In: Proceedings of the MCCAI workshop on medical image analysis on multiple sclerosis (MIAMS), pp 82–91

  107. Freifeld O, Greenspan H, Goldberger J (2007) Lesion detection in noisy MR brain images using constrained GMM and active contours. In: Proceedings of the 4th IEEE international symposium on biomedical imaging (ISBI), Arlington, pp 596–599

  108. Subbanna NK, Shah M, Francis SJ, Narayannan S, Collins DL, Arnold DL, Arbel T (2009) MS lesion segmentation using Markov random fields. In: Workshop on medical image analysis of multiple sclerosis, pp 15–26

  109. Jain S, Ribbens A, Sima DM, Huffel SV, Maes F, Smeets D (2016) Unsupervised framework for consistent longitudinal MS lesion segmentation. In: International workshop on medical computer vision and Bayesian and graphical models for biomedical imaging. Lecture notes in computer science (LNCS), vol 10081. Springer, Cham, pp 208–219

  110. Leemput KV, Maes F, Vandermeulen D, Colchester A, Suetens P (2001) Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Trans Med Imaging 20(8):677–688

    Google Scholar 

  111. Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning. ACM, Pittsburgh, pp 161–168

  112. Wang Z, Smith CD, Liu SJ (2018) Ensemble of multi-sized FCNs to improve white matter lesion segmentation. In: International workshop on machine learning in medical imaging, (MLMI-2018). Lecture notes in computer science (LNCS), vol 11046. Springer, Cham, pp 223–232

  113. Trip SA, Miller DH (2005) Imaging in multiple sclerosis. J Neurol Neurosurg Psychiatry 76(3):iii11–iii18

    Google Scholar 

  114. Ravnik D, Jerman T, Pernus F, Likar B, Spiclin Z (2018) Dataset variability leverages white-matter lesion segmentation performance with convolutional neural network. In: Proceedings of the SPIE, medical imaging: image processing, vol 10574

  115. Coupe P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C (2008) Optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27(4):425–441

    Google Scholar 

  116. Bao P, Zhang L (2003) Noise reduction for magnetic resonance images via adaptive multiscale products thresholding. IEEE Trans Med Imaging 22(9):1089–1099

    Google Scholar 

  117. Gerig G, Jomier M, Chakos M (2001) Valmet: a new validation tool for assessing and improving 3D object segmentation. In: International conference on medical image computing and computer-assisted intervention. Lecture notes in computer science (LNCS), vol 2208. Springer, Berlin, pp 516–523

  118. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2):825–841

    Google Scholar 

  119. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156

    Google Scholar 

  120. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54(3):2033–2044

    Google Scholar 

  121. Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X, Akhter K, Hua K, Woods R, Toga AW et al (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. NeuroImage 43(3):447–457

    Google Scholar 

  122. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97

    Google Scholar 

  123. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320

    Google Scholar 

  124. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    Google Scholar 

  125. Shattuck D, Sandor-Leahy S, Schaper K, Rottenberg D, Leahy R (2001) Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5):856–876

    Google Scholar 

  126. Dale A, Fischl B, Sereno MI (1999) Cortical surface-based analysis I: segmentation and surface reconstruction. NeuroImage 9(2):179–194

    Google Scholar 

  127. Ibanez L, Schroeder W, Ng L, Cates J (2003) The ITK software guide, vol 8. Kitware, Clifton Park

    Google Scholar 

  128. Zhang C, Song Y, Liu S, Lill S, Wang C, Tang Z, You Y, Gao Y, Klistoner A, Barnett M, Cai W (2018) MS-GAN: GAN-based semantic segmentation of multiple sclerosis lesions in brain magnetic resonance imaging. In: International conference on digital image computing: techniques and applications. IEEE, Canberra

  129. Freire PGL, Ferrari RJ (2016) Automatic iterative segmentation of multiple sclerosis lesions using student’s T mixture models and probabilistic anatomical atlases in FLAIR images. Comput Biol Med 73:10–23

    Google Scholar 

  130. Battaglini M, Rossi F, Grove RA, Stromillo ML, Whitcher B, Matthews PM, De Stefano N (2014) Automated identification of brain new lesions in multiple sclerosis using subtraction images. J Magn Reson Imaging 39(6):1543–1549

    Google Scholar 

  131. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews P, Federico A, De Stefano N (2002) Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage 17(1):479–489

    Google Scholar 

  132. Greve DN, Fischl B (2009) Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48(1):63–72

    Google Scholar 

  133. Manjón JV, Coupé P (2016) volBrain: an online MRI brain volumetry system. Front Neuroinform 10:30

    Google Scholar 

  134. Li C, Gatenby C, Wang L, Gore JC (2009) A robust parametric method for bias field estimation and segmentation of MR images. In: IEEE conference of computer visible and pattern recognition, Miami, pp 218–223

  135. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: IEEE computer society conference on computer visible and pattern recognition (CVPR), San Diego, pp 60–65

  136. Modat M, Ridgway G, Taylor Z, Lehman M, Barnes J, Hawkes D, Fox N, Ourselin S (2010) Fast free-form deformation using graphics processing units. Compu Methods Prog Biomed 98(3):278–284

    Google Scholar 

  137. Ourselin S, Stefanescu R, Pennec X (2002) Robust registration of multimodal images: towards real-time clinical applications. Med Image Comput Comput Assist Interv 2489:140–147

    MATH  Google Scholar 

  138. Lorenzo DG, Prima S, Arnold DL, Collins L, Barrilot C (2011) Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis. IEEE Trans Med Imaging 30(8):1455–1467

    Google Scholar 

  139. Collins DL, Holmes CJ, Peters TM, Evans AC (1995) Automatic 3-D model-based neuroanatomical segmentation. Hum Brain Mapp 3(3):190–208

    Google Scholar 

  140. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J (1995) A probabilistic atlas of the human brain: theory and rationale for its development: the international consortium for brain mapping (ICBM). NeuroImage 2(2):89–101

    Google Scholar 

  141. Carass A, Cuzzocreo J, Wheeler MB, Bazin PL, Resnick SM, Prince JL (2011) Simple paradigm for extra-cerebral tissue removal: algorithm and analysis. NeuroImage 56(4):1982–1992

    Google Scholar 

  142. Avants BB, Tustison N, Song G (2009) Advanced normalization tools (ANTS). Insight J 2:1–35

    Google Scholar 

  143. Prima S, Ayache N, Janke A, Francis S, Arnold D, Collins D (2002) Statistical analysis of longitudinal MRI data: applications for detection of disease activity in MS. In: Medical image computing computer-assisted intervention (MICCAI). Lecture notes in computer science, vol 2488. Springer, Berlin, pp 363–371

  144. Avants BB, Tustison JN, Wu J, Cook PA, Gee JC (2011) An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9(4):381–400

    Google Scholar 

  145. Nyul L, Udupa J, Zhang X (2000) New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 19(2):143–150

    Google Scholar 

Download references

Funding

The authors have no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Kaur.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Standards

The author declares that this article complies the ethical standard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Kaur, L. & Singh, A. State-of-the-Art Segmentation Techniques and Future Directions for Multiple Sclerosis Brain Lesions. Arch Computat Methods Eng 28, 951–977 (2021). https://doi.org/10.1007/s11831-020-09403-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09403-7

Navigation