Skip to main content

Advertisement

Log in

Estimating Initial Epidemic Growth Rates

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The initial exponential growth rate of an epidemic is an important measure of disease spread, and is commonly used to infer the basic reproduction number \(\mathcal{R}_{0}\). While modern techniques (e.g., MCMC and particle filtering) for parameter estimation of mechanistic models have gained popularity, maximum likelihood fitting of phenomenological models remains important due to its simplicity, to the difficulty of using modern methods in the context of limited data, and to the fact that there is not always enough information available to choose an appropriate mechanistic model. However, it is often not clear which phenomenological model is appropriate for a given dataset. We compare the performance of four commonly used phenomenological models (exponential, Richards, logistic, and delayed logistic) in estimating initial epidemic growth rates by maximum likelihood, by fitting them to simulated epidemics with known parameters. For incidence data, both the logistic model and the Richards model yield accurate point estimates for fitting windows up to the epidemic peak. When observation errors are small, the Richards model yields confidence intervals with better coverage. For mortality data, the Richards model and the delayed logistic model yield the best growth rate estimates. We also investigate the width and coverage of the confidence intervals corresponding to these fits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banks, R. B. (1993). Growth and diffusion phenomena: mathematical frameworks and applications (Vol. 14). Berlin: Springer.

    Google Scholar 

  • Bjørnstad, O. N., Finkenstädt, B. F., & Grenfell, B. T. (2002). Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model. Ecol. Monogr., 72, 169–184.

    Article  Google Scholar 

  • Bolker, B. M. (2008). Ecological models and data in R. Princeton: Princeton University Press. ISBN 0691125228.

    MATH  Google Scholar 

  • Bootsma, M. C. J., & Ferguson, N. M. (2007). The effect of public health measures on the 1918 influenza pandemic in U.S. cities. Proc. Natl. Acad. Sci. USA, 104, 7588–7593.

    Article  Google Scholar 

  • Chowell, G., Fenimore, P. W., Castillo-Garsow, M. A., & Castillo-Chavez, C. (2003). SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J. Theor. Biol., 224, 1–8.

    Article  MathSciNet  Google Scholar 

  • Chowell, G., Ammon, C. E., Hengartner, N. W., & Hyman, J. M. (2006a). Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: assessing the effects of hypothetical interventions. J. Theor. Biol., 241, 193–204.

    Article  MathSciNet  Google Scholar 

  • Chowell, G., Shim, E., Brauer, F., Diaz-Dueñas, P., Hyman, J. M., & Castillo-Chavez, C. (2006b). Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: application to the 2003 outbreak in Mexico. Stat. Med., 25, 1840–1857.

    Article  MathSciNet  Google Scholar 

  • Chowell, G., Nishiura, H., & Bettencourt, L. M. A. (2007). Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J. R. Soc. Interface, 4, 155–166.

    Article  Google Scholar 

  • de Silva, U. C., Warachitand, J., Waicharoen, S., & Chittaganpitch, M. (2009). A preliminary analysis of the epidemiology of influenza A(H1N1) virus infection in Thailand from early outbreak data. Euro Surveill., 14, 19292.

    Google Scholar 

  • Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley series in mathematical and computational biology. New York: Wiley.

    MATH  Google Scholar 

  • Goldstein, E., Dushoff, J., Ma, J., Plotkin, J. B., Earn, D. J. D., & Lipsitch, M. (2009). Reconstructing influenza incidence by deconvolution of daily mortality time series. Proc. Natl. Acad. Sci. USA doi:10.1073/pnas/092958.

    Google Scholar 

  • He, D., Dushoff, J., Day, T., Ma, J., & Earn, D. J. D. (2011). Mechanistic modeling of the three waves of the 1918 influenza pandemic. Theor. Ecol., 4, 283–288.

    Article  Google Scholar 

  • He, D., Dushoff, J., Day, T., Ma, J., & Earn, D. J. D. (2013). Inferring the causes of the three waves of the 1918 influenza pandemic in England and Wales. Proc. R. Soc. Lond. B, Biol. Sci., 280, 20131345.

    Article  Google Scholar 

  • Hsieh, Y.-H., Fisman, D. N., & Wu, J. (2010). On epidemic modeling in real time: an application to the 2009 Novel A (H1N1) influenza outbreak in Canada. BMC Res. Notes, 3, 283.

    Article  Google Scholar 

  • Ionides, E. L., Bretó, C., & King, A. A. (2006). Inference for nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA, 103, 18438–18443.

    Article  Google Scholar 

  • Kendall, D. G. (1956). Deterministic and stochastic epidemics in closed populations. In Proceedings of the third Berkeley symposium on mathematical statistics and probability (Vol. IV).

    Google Scholar 

  • Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., 115, 700–721.

    Article  MATH  Google Scholar 

  • Lipsitch, M., Cohen, T., Cooper, B., Robins, J. M., Ma, S., et al. (2003). Transmission dynamics and control of severe acute respiratory syndrome. Science, 300, 1966–1970.

    Article  Google Scholar 

  • Ma, J., van den Driessche, P., & Willeboordse, F. H. (2013). The importance of contact network topology for the success of vaccination strategies. J. Theor. Biol., 325, 12–21.

    Article  MathSciNet  MATH  Google Scholar 

  • Mills, C. E., Robins, J. M., & Lipsitch, M. (2004). Transmissibility of 1918 pandemic influenza. Nature, 432, 904–906.

    Article  Google Scholar 

  • Nishiura, H., Castillo-Chavez, C., Safan, M., & Chowell, G. (2009a). Transmission potential of the new influenza A(H1N1) virus and its age-specificity in Japan. Euro Surveill. doi:http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19227.

  • Nishiura, H., Wilson, N., & Baker, M. G. (2009b). Estimating the reproduction number of the novel influenza A virus (H1N1) in a Southern Hemisphere setting: preliminary estimate in New Zealand. J. N.-Z. Med. Assoc., 122, 73–77.

    Google Scholar 

  • Nishiura, H., Chowell, G., Safan, M., & Castillo-Chavez, C. (2010). Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza a (H1N1) 2009. Theor. Biol. Med. Model., 7, 1.

    Article  Google Scholar 

  • Pourabbas, E. (2001). A method to estimate the incidence of communicable diseases under seasonal fluctuations with application to cholera. Appl. Math. Comput., 118, 161–174.

    Article  MathSciNet  MATH  Google Scholar 

  • Richards, F. J. (1959). A flexible growth function for empirical use. J. Exp. Bot., 10, 290–300.

    Article  Google Scholar 

  • Roberts, M. G., & Heesterbeek, J. A. P. (2007). Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection. J. Math. Biol., 55, 803–816.

    Article  MathSciNet  MATH  Google Scholar 

  • Vynnycky, E., Trindall, A., & Mangtani, P. (2007). Estimates of the reproduction numbers of Spanish influenza using morbidity data. Int. J. Epidemiol., 36, 881–889.

    Article  Google Scholar 

  • Wallinga, J., & Lipsitch, M. (2007). How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. R. Soc. Lond. B, 274, 599–604.

    Article  Google Scholar 

  • Wearing, H. J., Rohani, P., & Keeling, M. J. (2005). Appropriate models for the management of infectious diseases. PLoS Med., 2, e174.

    Article  Google Scholar 

Download references

Acknowledgements

All the authors are supported by the Natural Sciences and Engineering research council of Canada (NSERC)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Dushoff, J., Bolker, B.M. et al. Estimating Initial Epidemic Growth Rates. Bull Math Biol 76, 245–260 (2014). https://doi.org/10.1007/s11538-013-9918-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9918-2

Keywords

Navigation