Skip to main content

Advertisement

Log in

Modeling Optimal Intervention Strategies for Cholera

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

While cholera has been a recognized disease for two centuries, there is no strategy for its effective control. We formulate a mathematical model to include essential components such as a hyperinfectious, short-lived bacterial state, a separate class for mild human infections, and waning disease immunity. A new result quantifies contributions to the basic reproductive number from multiple infectious classes. Using optimal control theory, parameter sensitivity analysis, and numerical simulations, a cost-effective balance of multiple intervention methods is compared for two endemic populations. Results provide a framework for designing cost-effective strategies for diseases with multiple intervention methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Blower, S.M., Dowlatabadi, H., 1994. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 2, 229–243.

    Google Scholar 

  • Codeço, C.T., 2001. Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. doi:10.1186/1471-2334-1-1.

    Google Scholar 

  • Colwell, R.R., et al., 2003. Reduction of cholera in Bangladeshi villages by simple filtration. Proc. Natl. Acad. Soc. USA 100, 1051–1055. doi:10.1073/pnas.0237386100.

    Article  Google Scholar 

  • Fleming, W.H., Rishel, R.W., 1975. Deterministic and Stochastic Optimal Control. Springer, Berlin.

    MATH  Google Scholar 

  • Hartley, D.M., Morris, J.G., Smith, D.L., 2006. Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med. 3(1), e7. doi:10.1371/journal.pmed.0030007.

    Article  Google Scholar 

  • Hendrix, T.R., 1971. The pathophysiology of cholera. Bull. N. Y. Acad. Med. 47, 1169–1180.

    Google Scholar 

  • Kaper, J.B., Morris, J.G., Levine, M.M., 1995. Cholera. Clin. Microbiol. Rev. 8, 48–86.

    Google Scholar 

  • King, A., Ionides, E.L., Pascual, M., Bouma, M., 2008. Inapparent infections and cholera dynamics. Nature 454, 877–880. doi:10.1038/nature07084.

    Article  Google Scholar 

  • Lenhart, S., Workman, J.T., 2007. Optimal Control Applied to Biological Models. Chapman & Hall, London.

    MATH  Google Scholar 

  • Levine, M.M., et al., 1988. Volunteer studies of deletion mutants of vibrio cholerae 01 prepared by recombinant techniques. Infect. Immun. 56(1), 161–167.

    Google Scholar 

  • Longini, Jr., I.M., et al., 2007. Controlling endemic cholera with oral vaccines. PLoS Med. 4(11), 1776–1783. doi:10.1371/journal.pmed.0040336.

    Article  Google Scholar 

  • Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E., 2008. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196. doi:10.1016/j.jtbi.2008.04.011.

    Article  Google Scholar 

  • Merrell, D.S., Butler, S.M., 2002. Host-induced epidemic spread of the cholera bacterium. Nature 417, 642–645. doi:10.1038/nature00778.

    Article  Google Scholar 

  • Naficy, A., et al., 1998. Treatment and vaccination strategies to control cholera in sub-Saharan refugee settings: a cost-effectiveness analysis. JAMA 279, 521–525.

    Article  Google Scholar 

  • Pierce, N.F., Banwell, J.G., et al., 1968. Controlled comparison of tetracycline and furazolidone in cholera. Br. Med. J. 3, 277–280. doi:10.1136/bmj.3.5613.277.

    Article  Google Scholar 

  • Pontryagin, L.S., Boltyanskii, V.G., Gamkrelize, R.V., Mishchenko, E.F., 1967. The Mathematical Theory of Optimal Processes. Wiley, New York.

    Google Scholar 

  • Van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • World Health Organization, 2008. Cholera. Fact Sheet No. 107.

  • World Health Organization, 2009. WHO position paper on Oral Rehydration Salts to reduce mortality from cholera. http://www.who.int/cholera/technical/en/index.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Lenhart.

Additional information

All authors worked on the model and optimal control formulation as well as the interpretation of the results. Miller Neilan contributed the optimal control characterization and numerical results. Schaefer contributed the parameter sensitivity analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller Neilan, R.L., Schaefer, E., Gaff, H. et al. Modeling Optimal Intervention Strategies for Cholera. Bull. Math. Biol. 72, 2004–2018 (2010). https://doi.org/10.1007/s11538-010-9521-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9521-8

Keywords

Navigation