Skip to main content
Log in

A pH and solvent optimized reverse-phase ion-paring-LC–MS/MS method that leverages multiple scan-types for targeted absolute quantification of intracellular metabolites

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Comprehensive knowledge of intracellular biochemistry is needed to accurately understand, model, and manipulate metabolism for industrial and therapeutic applications. Quantitative metabolomics has been driven by advances in analytical instrumentation and can add valuable knowledge to the understanding of intracellular metabolism. Liquid chromatography coupled to mass spectrometry (LC–MS and LC–MS/MS) has become a reliable means with which to quantify a multitude of intracellular metabolites in parallel with great specificity and accuracy. This work details a method that builds and extends upon existing reverse phase ion-paring liquid chromatography methods for separation and detection of polar and anionic compounds that comprise key nodes of intracellular metabolism by optimizing pH and solvent composition. In addition, the presented method utilizes multiple scan types provided by hybrid instrumentation to improve confidence in compound identification. The developed method was validated for a broad coverage of polar and anionic metabolites of intracellular metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Increasing the concentration of TBA was also explored. Increasing the concentration above 15 mM resulted in noticeable ion-suppression, and changes in TBA concentration were no longer pursued.

References

  • Antonio, C., Larson, T., Gilday, A., Graham, I., Bergstrom, E., & Thomas-Oates, J. (2007). Quantification of sugars and sugar phosphates in Arabidopsis thaliana tissues using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. Journal of Chromatography A, 1172, 170–178.

    Article  CAS  PubMed  Google Scholar 

  • Bajad, S. U., Lu, W., Kimball, E. H., Yuan, J., Peterson, C., & Rabinowitz, J. D. (2006). Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. Journal of Chromatography A, 1125, 76–88.

    Article  CAS  PubMed  Google Scholar 

  • Bartha, A., Billiet, H. A. H., de Galan, L., & Vigh, G. (1984a). Studies in reversed-phase ion-pair chromatography: III. The effect of counter ion concentration. Journal of Chromatography A, 291, 91–102.

    Article  CAS  Google Scholar 

  • Bartha, A., & Vigh, G. (1983a). Studies in reversed-phase ion-pair chromatography I. Adsorption isotherms of tetraalkylammonium ion-pair reagents on lichrosorb rp-18 in methanol-water eluents. Journal of Chromatography A, 260, 337–345.

    Article  CAS  Google Scholar 

  • Bartha, Á., & Vigh, G. (1983b). Studies in ion-pair chromatography : II. Retention of positive and negative ions and neutral solutes in tetrabutylammonium bromide-containing methanol—water eluents on lichrosorb rp-18. Journal of Chromatography A, 265, 171–182.

    Article  CAS  Google Scholar 

  • Bartha, Á., & Vigh, G. (1987). Studies in reversed-phase ion-pair chromatography : V. Simultaneous effects of the eluent concentration of the inorganic counter ion and the surface concentration of the pairing ion. Journal of Chromatography A, 395, 503–509.

    Article  CAS  Google Scholar 

  • Bartha, Á., Vigh, G., Billiet, H. A. H., & de Galan, L. (1984b). Studies in reversed-phase ion-pair chromatography : IV. The rôle of the chain length of the pairing ion. Journal of Chromatography A, 303, 29–38.

    Article  CAS  Google Scholar 

  • Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., van Dien, S. J., & Rabinowitz, J. D. (2009). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nature Chemical Biology, 5, 593–599.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bennette, N. B., Eng, J. F., & Dismukes, G. C. (2011). An LC-MS-based chemical and analytical method for targeted metabolite quantification in the model cyanobacterium Synechococcus sp. PCC 7002. Analytical Chemistry, 83, 3808–3816.

    Article  CAS  PubMed  Google Scholar 

  • Bordbar, A., Jamshidi, N., & Palsson, B. (2011). iAB-RBC-283: A proteomically derived knowledge-base of erythrocyte metabolism that can be used to simulate its physiological and patho-physiological states. BMC Systems Biology, 5, 110.

    Article  PubMed Central  PubMed  Google Scholar 

  • Buescher, J. M., Liebermeister, W., Jules, M., Uhr, M., Muntel, J., Botella, E., et al. (2012). Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science, 335, 1099–1103.

    Article  CAS  PubMed  Google Scholar 

  • Buescher, J. M., Moco, S., Sauer, U., & Zamboni, N. (2010). Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Analytical Chemistry, 82, 4403–4412.

    Article  CAS  PubMed  Google Scholar 

  • Buscher, J. M., Czernik, D., Ewald, J. C., Sauer, U., & Zamboni, N. (2009). Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Analytical Chemistry, 81, 2135–2143.

    Article  CAS  PubMed  Google Scholar 

  • Cai, X., Zou, L., Dong, J., Zhao, L., Wang, Y., Xu, Q., et al. (2009). Analysis of highly polar metabolites in human plasma by ultra-performance hydrophilic interaction liquid chromatography coupled with quadrupole-time of flight mass spectrometry. Analytica Chimica Acta, 650, 10–15.

    Article  CAS  PubMed  Google Scholar 

  • Cakir, T., Patil, K. R., Onsan, Z., Ulgen, K. O., Kirdar, B., & Nielsen, J. (2006). Integration of metabolome data with metabolic networks reveals reporter reactions. Molecular Systems Biology, 2, 50.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cantwell, F. F. (1984). Retention model for ion-pair chromatography based on double-layer ionic adsorption and exchange. Journal of Pharmaceutical and Biomedical Analysis, 2, 153–164.

    Article  CAS  PubMed  Google Scholar 

  • Chassagnole, C., Noisommit-Rizzi, N., Schmid, J. W., Mauch, K., & Reuss, M. (2002). Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnology and Bioengineering, 79, 53–73.

    Article  CAS  PubMed  Google Scholar 

  • Coulier, L., Bas, R., Jespersen, S., Verheij, E., van der Werf, M. J., & Hankemeier, T. (2006). Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Analytical Chemistry, 78, 6573–6582.

    Article  CAS  PubMed  Google Scholar 

  • Doucette, C. D., Schwab, D. J., Wingreen, N. S., & Rabinowitz, J. D. (2011). alpha-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nature Chemical Biology, 7, 894–901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fendt, S. M., Buescher, J. M., Rudroff, F., Picotti, P., Zamboni, N., & Sauer, U. (2010). Tradeoff between enzyme and metabolite efficiency maintains metabolic homeostasis upon perturbations in enzyme capacity. Molecular Systems Biology, 6, 356.

    PubMed Central  PubMed  Google Scholar 

  • Fong, S. S., Burgard, A. P., Herring, C. D., Knight, E. M., Blattner, F. R., Maranas, C. D., & Palsson, B. O. (2005). In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnology and Bioengineering, 91, 643–648.

    Article  CAS  PubMed  Google Scholar 

  • Gao, S., Zhang, Z.-P., & Karnes, H. T. (2005). Sensitivity enhancement in liquid chromatography/atmospheric pressure ionization mass spectrometry using derivatization and mobile phase additives. Journal of Chromatography B, 825, 98–110.

    Article  CAS  Google Scholar 

  • Gertsman, I., Gangoiti, J., & Barshop, B. (2014). Validation of a dual LC-HRMS platform for clinical metabolic diagnosis in serum, bridging quantitative analysis and untargeted metabolomics. Metabolomics, 10, 312–323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gille, C., Bolling, C., Hoppe, A., Bulik, S., Hoffmann, S., Hubner, K., et al. (2010). HepatoNet1: A comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Molecular Systems Biology, 6, 411.

    Article  PubMed Central  PubMed  Google Scholar 

  • Henry, C. S., Broadbelt, L. J., & Hatzimanikatis, V. (2007). Thermodynamics-based metabolic flux analysis. Biophysical Journal, 92, 1792–1805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iavarone, A., Jurchen, J., & Williams, E. (2000). Effects of solvent on the maximum charge state and charge state distribution of protein ions produced by electrospray ionization. Journal of the American Society for Mass Spectrometry, 11, 976–985.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iribarne, J. V., & Thomson, B. A. (1976). On the evaporation of small ions from charged droplets. The Journal of Chemical Physics, 64, 2287–2294.

    Article  CAS  Google Scholar 

  • Kebarle, P., & Tang, L. (1993). From ions in solution to ions in the gas phase—the mechanism of electrospray mass spectrometry. Analytical Chemistry, 65, 972A–986A.

    CAS  Google Scholar 

  • Kochanowski, K., Volkmer, B., Gerosa, L., Haverkorn Van Rijsewijk, B. R., Schmidt, B. R., & Heinemann, M. (2013). Functioning of a metabolic flux sensor in Escherichia coli. Proceedings of the National Academy of Sciences of the USA, 110, 1130–1135.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Link, H., Kochanowski, K., & Sauer, U. (2013). Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo. Nature Biotechnology, 31, 357–361.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Bennett, B. D., & Rabinowitz, J. D. (2008). Analytical strategies for LC-MS-based targeted metabolomics. Journal of Chromatography. B Analytical Technologies in the Biomedical and Life Sciences, 871, 236–242.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Clasquin, M. F., Melamud, E., Amador-Noguez, D., Caudy, A. A., & Rabinowitz, J. D. (2010). Metabolomic analysis via reversed-phase ion-pairing liquid chromatography coupled to a stand alone orbitrap mass spectrometer. Analytical Chemistry, 82, 3212–3221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo, B., Groenke, K., Takors, R., Wandrey, C., & Oldiges, M. (2007). Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. Journal of Chromatography A, 1147, 153–164.

    Article  CAS  PubMed  Google Scholar 

  • Mashego, M. R., Wu, L., van Dam, J. C., Ras, C., Vinke, J. L., van Winden, W. A., et al. (2004). MIRACLE: Mass isotopomer ratio analysis of U-13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnology and Bioengineering, 85, 620–628.

    Article  CAS  PubMed  Google Scholar 

  • Matyska, M. T., Pesek, J. J., Duley, J., Zamzami, M., & Fischer, S. M. (2010). Aqueous normal phase retention of nucleotides on silica hydride-based columns: Method development strategies for analytes relevant in clinical analysis. Journal of Separation Science, 33, 930–938.

    Article  CAS  PubMed  Google Scholar 

  • McCloskey, D., Gangoiti, J. A., King, Z. A., Naviaux, R. K., Barshop, B. A., Palsson, B. O., et al. (2014). A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnology and Bioengineering, 111, 803–815.

    Article  CAS  PubMed  Google Scholar 

  • McCloskey, D., Utrilla, J., Naviaux, R., Palsson, B., & Feist, A. (2015). Fast Swinnex filtration (FSF): A fast and robust sampling and extraction method suitable for metabolomics analysis of cultures grown in complex media. Metabolomics, 11, 198–209.

    Article  CAS  Google Scholar 

  • Nakahigashi, K., Toya, Y., Ishii, N., Soga, T., Hasegawa, M., Watanabe, H., et al. (2009). Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism. Molecular Systems Biology, 5, 306.

    Article  PubMed Central  PubMed  Google Scholar 

  • Noor, E., Haraldsdottir, H. S., Milo, R., & Fleming, R. M. (2013). Consistent estimation of Gibbs energy using component contributions. PLoS Computational Biology, 9, e1003098.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pabst, M., Grass, J., Fischl, R., Leonard, R., Jin, C., Hinterkorner, G., et al. (2010). Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Analytical Chemistry, 82, 9782–9788.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pozo, O. J., van Eenoo, P., Deventer, K., Elbardissy, H., Grimalt, S., Sancho, J. V., et al. (2011). Comparison between triple quadrupole, time of flight and hybrid quadrupole time of flight analysers coupled to liquid chromatography for the detection of anabolic steroids in doping control analysis. Analytica Chimica Acta, 684, 107–120.

    Article  CAS  Google Scholar 

  • Rayleigh, L. (1882). XX. On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine Series, 14, 184–186.

    Article  Google Scholar 

  • Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed., Vol. A2.2). New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Shen, Y., Liu, J., Estiu, G., Isin, B., Ahn, Y. Y., Lee, D. S., et al. (2010). Blueprint for antimicrobial hit discovery targeting metabolic networks. Proceedings of the National Academy of Sciences of the USA, 107, 1082–1087.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang, L., & Kebarle, P. (1993). Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Analytical Chemistry, 65, 3654–3668.

    Article  CAS  Google Scholar 

  • Taymaz-Nikerel, H., Borujeni, A. E., Verheijen, P. J., Heijnen, J. J., & van Gulik, W. M. (2010). Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnology and Bioengineering, 107, 369–381.

    Article  CAS  PubMed  Google Scholar 

  • Taymaz-Nikerel, H., de Mey, M., Baart, G., Maertens, J., Heijnen, J. J., & van Gulik, W. (2013). Changes in substrate availability in Escherichia coli lead to rapid metabolite, flux and growth rate responses. Metabolic Engineering, 16, 115–129.

    Article  CAS  PubMed  Google Scholar 

  • Taymaz-Nikerel, H., van Gulik, W. M., & Heijnen, J. J. (2011). Escherichia coli responds with a rapid and large change in growth rate upon a shift from glucose-limited to glucose-excess conditions. Metabolic Engineering, 13, 307–318.

    Article  CAS  PubMed  Google Scholar 

  • Tepper, N., Noor, E., Amador-Noguez, D., Haraldsdottir, H. S., Milo, R., Rabinowitz, J., et al. (2013). Steady-state metabolite concentrations reflect a balance between maximizing enzyme efficiency and minimizing total metabolite load. PLoS ONE, 8, e75370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomson, B. A., & Iribarne, J. V. (1979). Field induced ion evaporation from liquid surfaces at atmospheric pressure. The Journal of Chemical Physics, 71, 4451–4463.

    Article  CAS  Google Scholar 

  • Toya, Y., Nakahigashi, K., Tomita, M., & Shimizu, K. (2012). Metabolic regulation analysis of wild-type and arcA mutant Escherichia coli under nitrate conditions using different levels of omics data. Molecular BioSystems, 8, 2593–2604.

    Article  CAS  PubMed  Google Scholar 

  • van Dam, J. C., Eman, M. R., Frank, J., Lange, H. C., van Dedem, G. W. K., & Heijnen, S. J. (2002). Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection. Analytica Chimica Acta, 460, 209–218.

    Article  Google Scholar 

  • Williamson, L. N., Zhang, G., Terry, A. V., & Bartlett, M. G. (2008). Comparison of time-of-flight mass spectrometry to triple quadrupole tandem mass spectrometry for quantitative bioanalysis: Application to antipsychotics. Journal of Liquid Chromatography and Related Technologies, 31, 2737–2751.

    Article  CAS  Google Scholar 

  • Wu, L., Mashego, M. R., van Dam, J. C., Proell, A. M., Vinke, J. L., Ras, C., et al. (2005). Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Analytical Biochemistry, 336, 164–171.

    Article  CAS  PubMed  Google Scholar 

  • Xing, J., Apedo, A., Tymiak, A., & Zhao, N. (2004). Liquid chromatographic analysis of nucleosides and their mono-, di- and triphosphates using porous graphitic carbon stationary phase coupled with electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 18, 1599–1606.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y. F., Amador-Noguez, D., Reaves, M. L., Feng, X. J., & Rabinowitz, J. D. (2012a). Ultrasensitive regulation of anapleurosis via allosteric activation of PEP carboxylase. Nature Chemical Biology, 8, 562–568.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, Y. F., Zhao, X., Glass, D. S., Absalan, F., Perlman, D. H., Broach, J. R., & Rabinowitz, J. D. (2012b). Regulation of yeast pyruvate kinase by ultrasensitive allostery independent of phosphorylation. Molecular Cell, 48, 52–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., et al. (2011). Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology, 7, 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, J., Doucette, C. D., Fowler, W. U., Feng, X. J., Piazza, M., Rabitz, H. A., et al. (2009). Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli. Molecular Systems Biology, 5, 302.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zamboni, N., Kummel, A., & Heinemann, M. (2008). anNET: A tool for network-embedded thermodynamic analysis of quantitative metabolome data. BMC Bioinformatics, 9, 199.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao, Y., Liu, G., Liu, Y., Yuan, L., Hawthorne, D., Shen, J. X., et al. (2013). Improved ruggedness of an ion-pairing liquid chromatography/tandem mass spectrometry assay for the quantitative analysis of the triphosphate metabolite of a nucleoside reverse transcriptase inhibitor in peripheral blood mononuclear cells. Rapid Communications in Mass Spectrometry, 27, 481–488.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Giuseppe Paglia, Scott Harrison, Brian Rappold, and Russ Grant for helpful discussions. We would also like to thank Jose Utrilla, Aarash Bordbar, and Neema Jamshidi for contirubuting biological matrices for method testing and development. The work was funded by the Novo Nordisk Foundation.

Conflict of interest

We have no conflicts of interest.

Compliance with Ethical Requirements

All authors followed the ethical requirements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam M. Feist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCloskey, D., Gangoiti, J.A., Palsson, B.O. et al. A pH and solvent optimized reverse-phase ion-paring-LC–MS/MS method that leverages multiple scan-types for targeted absolute quantification of intracellular metabolites. Metabolomics 11, 1338–1350 (2015). https://doi.org/10.1007/s11306-015-0790-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0790-y

Keywords

Navigation