Skip to main content
Log in

Indoor Aerosol Modeling: Basic Principles and Practical Applications

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

The type and amount of indoor air pollutants affects the comfort and quality of indoor environments. Therefore, indoor air quality is an important issue with different social, economic, and health aspects because people in developing countries spend most of their time indoors being exposed to different kinds of indoor pollutants. The indoor air quality can be assessed empirically by measuring the pollutant concentrations or can be predicted by means of mathematical models. An indoor aerosol model describes the dynamic behavior of indoor air pollutants. The basic concept of indoor air models is the mass-balance-conservation where several factors that govern the indoor particle concentrations can be described. These factors may include direct emissions from indoor sources, outdoor aerosol particles penetrating indoors as a result of the ventilation and filtration processes, deposition onto indoor surfaces, and removal from indoor air by means of ventilation. Here we present principles of indoor aerosol models and we also give examples of different kind of models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abadie, M., Limam, K., & Allard, F. (2001). Indoor particle pollution: Effect of wall textures on particle Deposition. Building and Environment, 36, 821–827.

    Article  Google Scholar 

  • Abt, E., Suh, H. H., Catalano, P., & Koutrakis, P. (2000). Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science and Technology, 34, 3579–3587.

    Article  CAS  Google Scholar 

  • Afshari, A., Matson, U., & Ekberg, L. E. (2005). Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air, 15, 141–150.

    Article  CAS  Google Scholar 

  • Alzona, J., Cohen, B. L., Rudolph, H., Jow, H. N., & Frohliger, J. O. (1979). Indoor–outdoor relationships for airborne particulate matter of outdoor origin. Atmospheric Environment, 13, 55–60.

    Article  CAS  Google Scholar 

  • Asmi, A. J., Pirjola, L. H., & Kulmala, M. A. (2004). Sectional aerosol model for submicron particles in indoor air. Scandinavian Journal of Work, Environment & Health, 30(Suppl 2), 63–72.

    Google Scholar 

  • Borchiellini, R., & Fürbringer, J.-M. (1999). An evaluation exercise of a multizone air flow model. Energy and Buildings, 30, 35–51.

    Article  Google Scholar 

  • Corner, B. J., & Pendlebury, E. D. (1951). The coagulation and deposition of a stirred aerosol. Proceedings of the Physical Society, B64, 645–654.

    Google Scholar 

  • Dascalaki, E., Santamouris, M., Argiriou, A., Helmis, C., Asimakopoulos, D. N., Papadopoulos, K. et al. (1996). On the combination of air velocity and flow measurements in single sided natural ventilation configurations. Energy and Buildings, 24, 155–165.

    Article  Google Scholar 

  • Fan, Y. (1995). CFD modelling of the air and contaminant distribution in rooms. Energy and Buildings, 23, 33–39.

    Article  CAS  Google Scholar 

  • Fan, C. W., & Zhang, J. J. (2001). Characterization of emissions from portable household combustion devices: Particle size distributions, emission rates and factors, and potential exposures. Atmospheric Environment, 35, 1281–1290.

    Article  CAS  Google Scholar 

  • Ferro, A. R., Kopperud, R. J., & Hildemann, L. M. (2004) Source strengths for indoor human activities that resuspend particulate matter. Environmental Science and Technology, 38, 1759–1764.

    Article  CAS  Google Scholar 

  • Feustel, H. E. (1999). COMIS – an international multizone air-flow and contaminant transport model. Energy and Buildings, 30, 3–18.

    Article  Google Scholar 

  • Fogh, C. L., Byrne, M. A., Roed, J., & Goddard, A. J. H. (1997). Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios. Atmospheric Environment, 31, 2193–2203.

    Article  CAS  Google Scholar 

  • Friess, H., & Yadigaroglu, G. (2002). Modeling of the resuspension of particle clusters from multilayer aerosol deposits with variable porosity. Journal of Aerosol Science, 33, 883–906.

    Article  CAS  Google Scholar 

  • Gan, G. (1995). Evaluation of room air distributions systems using computational fluid dynamics. Energy and Buildings, 23, 83–93.

    Article  Google Scholar 

  • Goodfellow, H., & Tähti, E. (2001). Industrial ventilation: Design guidebook. In Gustavsson, J. (Ed.), Cabin air filters: Performance and requirements. Academic Press, California, p. 685 (SAE Conference, Detroit, February 1996.)

  • Haas, A., Weber, A., Dorer, V., Keilholz, W., & Pelletret, R. (2002). COMIS v3.1 simulation environment for multizone air flow and pollutant transport modelling. Energy and Buildings, 34, 873–882.

    Article  Google Scholar 

  • Hanley, J. T., Ensor, D. S., Smith, D. D., & Sparks, L. E. (1994). Fractional aerosol filtration efficiency of in duct ventilation air cleaners. Indoor Air, 4, 169–178.

    Article  CAS  Google Scholar 

  • He, C., Morawska, L., Hitchins, J., & Gilbert, D. (2004). Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmospheric Environment, 38, 3405–3415.

    Article  CAS  Google Scholar 

  • Hinds, W. C. (1999). Aerosol technology (2nd ed.). New York: Wiley.

    Google Scholar 

  • Howard-Reed, C., Wallace, L. A., & Emmerich, S. J. (2003). Effect of ventilation system and air filters on decay rates of particles produced by indoor sources in an occupied townhouse. Atmospheric Environment, 37, 5295–5306.

    Article  CAS  Google Scholar 

  • Hussein, T., Glytsos, T., Ondráček, J., Ždímal, V., Hämeri, K., Lazaridis, M., et al. (2006). Particle size characterization and emission rates during indoor activities in a house. Atmospheric Environment, 40, 4285–4307.

    Article  CAS  Google Scholar 

  • Hussein, T., Hämeri, K., Heikkinen, M. S. A., & Kulmala, M. (2005a). Indoor and outdoor particle size characterization at a family house in Espoo – Finland. Atmospheric Environment, 39, 3697–3709.

    Article  CAS  Google Scholar 

  • Hussein, T., Korhonen, H., Herrmann, E., Hämeri, K., Lehtinen, K., & Kulmala, M. (2005b). Emission rates due to indoor activities: Indoor aerosol model development, evaluation, and applications. Aerosol Science and Technology, 39(11), 1111–1127.

    Article  CAS  Google Scholar 

  • Jamriska, M., Morawska, L., & Ensor, D. S. (2003). Control strategies for sub-micrometer particles indoors: Model study of air filtration and ventilation. Indoor Air, 13, 96–105.

    Article  CAS  Google Scholar 

  • Jones, A. P. (1999). Indoor air quality and health. Atmospheric Environment, 33, 4535–4564.

    Article  CAS  Google Scholar 

  • Ju, C., & Spengler, J. D. (1981) Room to room variations in concentration of respirable particles in residences. Environmental Science and Technology, 15, 592–596.

    Article  Google Scholar 

  • Kildeso, J., Vinzents, P., Schneider, T., & Kloch, N. P. (1999) A simple method for measuring the potential resuspension of dust from carpets in the indoor environment. Textile Research Journal, 69, 169–175.

    CAS  Google Scholar 

  • Korhonen, H., Lehtinen, K. E. J., & Kulmala, M. (2004). Aerosol dynamic model UHMA: Model development and validation. Atmospheric Chemistry and Physics, 4, 757–771.

    CAS  Google Scholar 

  • Kulmala, M., Asmi, A., & Pirjola, L. (1999). Indoor air aerosol model: The effect of outdoor air, filtration and ventilation on indoor concentrations. Atmospheric Environment, 33, 2133–2144.

    Article  CAS  Google Scholar 

  • Kulmala, M., Lehtinen, K. E. J., & Laaksonen, A. (2006). Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmospheric Chemistry and Physics, 6, 787–793.

    Article  CAS  Google Scholar 

  • Lai, A. C. K., & Nazaroff, W. W. (2000). Modeling indoor particle deposition from turbulent flow onto smooth surfaces. Journal of Aerosol Science, 31, 463–476.

    Article  CAS  Google Scholar 

  • Lai, A. C. K., Byrne, M. A., & Goddard, A. J. H. (2002). Experimental studies of the effect of rough surfaces and air speed on aerosol deposition in a test chamber. Aerosol Science and Technology, 36, 973–982.

    Article  CAS  Google Scholar 

  • Lazardis, M., & Drossinos, Y. (1998). Multilayer resuspension of small identical particles by turbulent flow. Journal of Aerosol Science and Technology, 28(6), 548–560.

    Article  Google Scholar 

  • Lee, S.-C., Guo, H., Li, W.-M., & Chan, L.-Y. (2002). Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. Atmospheric Environment, 36, 1929–1940.

    Article  CAS  Google Scholar 

  • Li, Y., & Delsante, A. (2001). Natural ventilation induced by combined wind and thermal forces. Building and Environment, 36, 59–71.

    Article  Google Scholar 

  • Liu, D.-L., & Nazaroff, W. W. (2001). Modeling pollutant penetration across building envelopes. Atmospheric Environment, 35, 4451–4462.

    Article  CAS  Google Scholar 

  • Long, C. H., Suh, H. H., & Koutrakis, P. (2000). Characterization of indoor particle sources using continuous mass and size monitors. Journal of Air and Waste Management Association, 50, 1236–1250.

    CAS  Google Scholar 

  • Lum, R. M., & Graedel, T. E. (1973) Measurements and models of indoor aerosol size spectra. Atmospheric Environment, 7, 827–842.

    Article  Google Scholar 

  • Meklin, T., Reponen, T., Toivola, M., Koponen, V., Husman, T., Hyvärinen, A., et al. (2002). Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment, 36, 6031–6039.

    Article  CAS  Google Scholar 

  • Miller, S. L., & Nazaroff, W. W. (2001). Environmental tobacco smoke particles in multizone indoor environments. Atmospheric Environment, 35, 2053–2067.

    Article  CAS  Google Scholar 

  • Morawska, L., He, C., Hitchins, J., Gilbert, D., & Parappukkaran, S. (2001). The relationship between indoor and outdoor airborne particles in the residential environment. Atmospheric Environment, 35, 3463–3473.

    Article  CAS  Google Scholar 

  • Mosley, R. B., Greenwell, D. J., Sparks, L. E., Guom Z., Tucker, W. G., Fortmann, R. et al. (2001). Penetration of ambient fine particles into the indoor environment. Aerosol Science and Technology, 34, 127–136.

    Article  CAS  Google Scholar 

  • Nazaroff, W. W. (2004). Indoor particle dynamics. Indoor Air, 14(Suppl 7), 175–183.

    Article  Google Scholar 

  • Nazaroff, W. W., & Cass, G. R. (1986). Mathematical modeling of chemically reactive pollutants in indoor air. Environmental Science and Technology, 20, 924–934.

    Article  CAS  Google Scholar 

  • Nazaroff, W. W., & Cass, G. R. (1989). Mathematical modeling of indoor aerosol dynamics. Environmental Science and Technology, 23, 157–166.

    Article  CAS  Google Scholar 

  • Otten, J. A., & Burge, H. A. (1999). Bacteria. In: Macher, J. (Ed.), Bioaerosols, assessment and control. American Conference of Governmental Industrial Hygienists, Cincinnati, pp. 183–1810.

  • Pirjola, L. (1999). Effects of the increased UV radiation and biogenic VOC emissions on ultrafine sulphate aerosol formation. Journal of Aerosol Science, 29, 355–367.

    Article  Google Scholar 

  • Platts-Mills, T. A. E., Ward, G. W., Sporik, R., Gelber, L. E., Champman, M. D., & Heymann, P. W. (1991). Epidemiology of the relationship between exposure to indoor allergins and asthema. International Archives of Allergy and Applied Immunology, 87(2), 505–510.

    Google Scholar 

  • Porstendörfer, J., & Reineking, A. (1992) Indoor behavior and characteristics of radon progeny. Radiation Protection Dosimetery, 45, 303–311.

    Google Scholar 

  • Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35, 515–526.

    Article  Google Scholar 

  • Raunemaa, T., Kulmala, M., Saari, H., Olin, M., & Kulmala, M. H. (1989). Indoor air aerosol model: Transport indoors and deposition of fine and coarse particles. Aerosol Science and Technology, 11, 11–25.

    Article  CAS  Google Scholar 

  • Ren, Z., & Stewart, J. (2003). Simulating air flow and temperature distribution inside buildings using a modified version of COMIS with sub-zonal divisions. Energy and Buildings, 35, 257–271.

    Article  Google Scholar 

  • Riley, W. J., Mckone, T. E., Lai, A. C. K., & Nazaroff, W. W. (2002). Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environmental Science and Technology, 36, 200–207.

    Article  CAS  Google Scholar 

  • Roulet, C.-A., Fürbringer, J.-M., & Creton, P. (1999). The influence of the user on the results of multizone air flow simulations with COMIS. Energy and Buildings, 30, 73–86.

    Article  Google Scholar 

  • Schneider, T., Kildeso, J., & Breum, N. O. (1999). A two-compartment model for determining the contribution of sources, surface deposition and resuspension to air and surface dust concentration levels in occupied rooms. Building and Environment, 34, 583–595.

    Article  Google Scholar 

  • Thatcher, T. L., & Layton, D. W. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 29, 1487–1497.

    Article  CAS  Google Scholar 

  • Thatcher, T. L., Lai, A. C. K., Moreno-Jackson, R., Sextro, R. G., & Nazaroff, W. W. (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmospheric Environment, 36, 1811–1819.

    Article  CAS  Google Scholar 

  • Theerachaisupakij, W., Matsusaka, S., Akashi, Y., & Masuda, H. (2003). Reentrainment of deposited particles by drag and aerosol collision. Journal of Aerosol Science, 34, 261–274.

    Article  CAS  Google Scholar 

  • Thornburg, J., Ensor, D. S., Rodos, C. E., Lawless, P. A., Sparks, L. E., & Mosley, R. B. (2001). Penetration of particles into buildings and associated physical factors – Part I: Model development and computer simulations. Journal of Aerosol Science and Technology, 34, 284–296.

    Article  CAS  Google Scholar 

  • Tung, T. C. W., Chao, C. Y. H., & Burnett, J. (1999). A methodology to investigate the particulate penetration coefficient through building shell. Atmospheric Environment, 33, 881–893.

    Article  CAS  Google Scholar 

  • Vartiainen, E., Kulmala, M., Ruuskanen, T. M., Taipale, R., Rinne, J., & Vehkamäki, H. (2006). Formation and growth of indoor air aerosol particles as a result of d-limonene oxidation. Atmospheric Environment, 40, 7882–7892.

    Article  CAS  Google Scholar 

  • Walton, G. N. (1997). CONTAM96 User manual. Report NSITIR 6056. US Department of Commerce, National Institute of Standards and Technology, Gaithersburg (September).

  • Wanner, H. U. (1993). Sources of pollutants in indoor air. IARC Scientific Publications, 109, 19–30.

    CAS  Google Scholar 

  • Ziskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34, 91–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tareq Hussein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussein, T., Kulmala, M. Indoor Aerosol Modeling: Basic Principles and Practical Applications. Water Air Soil Pollut: Focus 8, 23–34 (2008). https://doi.org/10.1007/s11267-007-9134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-007-9134-x

Keywords

Navigation