Skip to main content

Advertisement

Log in

Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The control of highly contagious diseases is very important today. In this paper, we proposed an SEIR model with Crowley–Martin-type incidence rate and Holling type II and III treatment rates. Dynamics of the spread of infection and its control are performed for both the cases of treatment functions. We have performed the stability and bifurcation analyses of the model system. The sensitivity analysis of all the parameters with respect to the basic reproduction number has been performed. Furthermore, we discussed the optimal control strategy using Pontryagin’s maximum principle and determined the effect of control parameter u on the model dynamics. Moreover, we validate the theoretical results using numerical simulations. Between both the treatment functions, we observe that the implementation of Holling type II treatment is most effective to prevent the spread of diseases. Thus, we conclude that the pervasive effect of treatment not only reduces the basic reproduction number as the control parameter u increases with nonlinear treatment, h(I) but also controls the spread of disease infection among the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ackleh, A.S., Allen, L.J.: Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size. J. Math. Biol. 47(2), 153–168 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Anderson, R.M., May, R.M.: Regulation and stability of host-parasite population interactions: I. Regulatory processes. J. Anim. Ecol. 47, 219–247 (1978)

    Google Scholar 

  3. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, New York (1992)

    Google Scholar 

  4. Arino, J., McCluskey, C.C., van den Driessche, P.: Global results for an epidemic model with vaccination that exhibits backward bifurcation. SIAM J. Appl. Math. 64(1), 260–276 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Bai, Z., Zhou, Y.: Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate. Nonlinear Anal. Real World Appl. 13(3), 1060–1068 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Bailey, N.T., et al.: The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks HP13 6LE. (1975)

  7. Binder, S., Levitt, A.M., Sacks, J.J., Hughes, J.M.: Emerging infectious diseases: public health issues for the 21st century. Science 284(5418), 1311–1313 (1999)

    Google Scholar 

  8. Biswas, S., Sasmal, S.K., Samanta, S., Saifuddin, M., Pal, N., Chattopadhyay, J.: Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects. Nonlinear Dyn. 87(3), 1553–1573 (2017)

    MATH  Google Scholar 

  9. Blower, S.M., McLean, A.R.: Mixing ecology and epidemiology. Proc. R. Soc. Lond. B 245(1314), 187–192 (1991)

    Google Scholar 

  10. Bowong, S., Kurths, J.: Modeling and analysis of the transmission dynamics of tuberculosis without and with seasonality. Nonlinear Dyn. 67(3), 2027–2051 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Chen, Q., Teng, Z., Wang, L., Jiang, H.: The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence. Nonlinear Dyn. 71(1–2), 55–73 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. North Am. Benthol. Soc. 8(3), 211–221 (1989)

    Google Scholar 

  14. Diaz, P., Constantine, P., Kalmbach, K., Jones, E., Pankavich, S.: A modified SEIR model for the spread of Ebola in Western Africa and metrics for resource allocation. Appl. Math. Comput. 324, 141–155 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Dubey, B., Dubey, P., Dubey, U.S.: Dynamics of an SIR model with nonlinear incidence and treatment rate. Appl. Appl. Math. 10(2), (2015)

  17. Dubey, B., Patra, A., Srivastava, P., Dubey, U.S.: Modeling and analysis of an SEIR model with different types of nonlinear treatment rates. J. Biol. Syst. 21(03), 1350023 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Dubey, P., Dubey, B., Dubey, U.S.: An SIR model with nonlinear incidence rate and Holling type III treatment rate. Appl. Anal. Biol. Phys. Sci. 186, 63–81 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Earn, D.J., Rohani, P., Bolker, B.M., Grenfell, B.T.: A simple model for complex dynamical transitions in epidemics. Science 287(5453), 667–670 (2000)

    Google Scholar 

  20. Elaiw, A., Azoz, S.: Global properties of a class of HIV infection models with Beddington-DeAngelis functional response. Math. Methods Appl. Sci. 36(4), 383–394 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Elbasha, E., Podder, C., Gumel, A.: Analyzing the dynamics of an SIRS vaccination model with waning natural and vaccine-induced immunity. Nonlinear Anal. Real World Appl. 12(5), 2692–2705 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Feng, Z., Thieme, H.R.: Recurrent outbreaks of childhood diseases revisited: the impact of isolation. Math. Biosci. 128(1–2), 93–130 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Hu, Z., Liu, S., Wang, H.: Backward bifurcation of an epidemic model with standard incidence rate and treatment rate. Nonlinear Anal. Real World Appl. 9(5), 2302–2312 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Hutson, V., Schmitt, K.: Permanence and the dynamics of biological systems. Math. Biosci. 111(1), 1–71 (1992)

    MathSciNet  MATH  Google Scholar 

  25. Hyman, J.M., Li, J.: Modeling the effectiveness of isolation strategies in preventing STD epidemics. SIAM J. Appl. Math. 58(3), 912–925 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Jana, S., Nandi, S.K., Kar, T.: Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment. Acta Biotheor. 64(1), 65–84 (2016)

    Google Scholar 

  27. Kar, T., Batabyal, A., Agarwal, R.: Modeling and analysis of an epidemic model with classical Kermack–Mckendrick incidence rate under treatment. J. Korea Soc. Ind. Appl. Math. 14(1), 1–16 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Keeling, M.J., Woolhouse, M.E., Shaw, D.J., Matthews, L., Chase-Topping, M., Haydon, D.T., Cornell, S.J., Kappey, J., Wilesmith, J., Grenfell, B.T.: Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science 294(5543), 813–817 (2001)

    Google Scholar 

  29. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115(772), 700–721 (1927)

    MATH  Google Scholar 

  30. Khan, M.A., Khan, Y., Islam, S.: Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment. Phys. A Stat. Mech. Appl. 493, 210–227 (2018)

    MathSciNet  Google Scholar 

  31. Koprivica, V., Stone, D.L., Park, J.K., Callahan, M., Frisch, A., Cohen, I.J., Tayebi, N., Sidransky, E.: Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease. Am. J. Human Genet. 66(6), 1777–1786 (2000)

    Google Scholar 

  32. Lekone, P.E., Finkenstädt, B.F.: Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics 62(4), 1170–1177 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Li, L.: Patch invasion in a spatial epidemic model. Appl. Math. Comput. 258, 342–349 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Li, L.: Monthly periodic outbreak of hemorrhagic fever with renal syndrome in China. J. Biol. Syst. 24(04), 519–533 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Li, L., Bai, Y., Jin, Z.: Periodic solutions of an epidemic model with saturated treatment. Nonlinear Dyn. 76(2), 1099–1108 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Li, L., Zhang, J., Liu, C., Zhang, H.T., Wang, Y., Wang, Z.: Analysis of transmission dynamics for Zika virus on networks. Appl. Math. Comput. 347, 566–577 (2019)

    MathSciNet  Google Scholar 

  37. Li, M.Y., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 1070–1083 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Li, M.Y., Wang, L.: A criterion for stability of matrices. J. Math. Anal. Appl. 225(1), 249–264 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Li, X., Jusup, M., Wang, Z., Li, H., Shi, L., Podobnik, B., Stanley, H.E., Havlin, S., Boccaletti, S.: Punishment diminishes the benefits of network reciprocity in social dilemma experiments. Proc. Natl. Acad. Sci. 115(1), 30–35 (2018)

    Google Scholar 

  40. Martin Jr., R.H.: Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45(2), 432–454 (1974)

    MathSciNet  MATH  Google Scholar 

  41. May, R.M., Anderson, R.M.: Regulation and stability of host-parasite population interactions: II. Destabilizing processes. J. Anim. Ecol. pp. 249–267 (1978)

  42. McCluskey, C.C.: Global stability for an SIR epidemic model with delay and nonlinear incidence. Nonlinear Anal. Real World Appl. 11(4), 3106–3109 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Misra, A., Gupta, A., Venturino, E.: Cholera dynamics with Bacteriophage infection: a mathematical study. Chaos Solitons Fractals 91, 610–621 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Pontryagin, L.S.: Mathematical theory of optimal processes. Routledge, (1987)

  45. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley, New York (2008)

    MATH  Google Scholar 

  46. Shu, H., Fan, D., Wei, J.: Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission. Nonlinear Anal. Real World Appl. 13(4), 1581–1592 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Shulgin, B., Stone, L., Agur, Z.: Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol. 60(6), 1123–1148 (1998)

    MATH  Google Scholar 

  48. Sun, G.Q., Xie, J.H., Huang, S.H., Jin, Z., Li, M.T., Liu, L.: Transmission dynamics of cholera: mathematical modeling and control strategies. Commun. Nonlinear Sci. Numer. Simul. 45, 235–244 (2017)

    MathSciNet  Google Scholar 

  49. Sun, G.Q., Zhang, Z.K.: Global stability for a sheep brucellosis model with immigration. Appl. Math. Comput. 246, 336–345 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Upadhyay, R.K., Kumari, S., Misra, A.: Modeling the virus dynamics in computer network with SVEIR model and nonlinear incident rate. J. Appl. Math. Comput. 54(1–2), 485–509 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Wang, W.: Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201(1–2), 58–71 (2006)

    MathSciNet  MATH  Google Scholar 

  52. Wang, W., Ruan, S.: Bifurcations in an epidemic model with constant removal rate of the infectives. J. Math. Anal. Appl. 291(2), 775–793 (2004)

    MathSciNet  MATH  Google Scholar 

  53. Wang, X., Tao, Y., Song, X.: Global stability of a virus dynamics model with Beddington-DeAngelis incidence rate and CTL immune response. Nonlinear Dyn. 66(4), 825–830 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Wang, Y., Lim, H.: The global childhood obesity epidemic and the association between socio-economic status and childhood obesity (2012)

  55. Wu, L.I., Feng, Z.: Homoclinic bifurcation in an SIQR model for childhood diseases. J. Differ. Equ. 168(1), 150–167 (2000)

    MathSciNet  MATH  Google Scholar 

  56. Xu, R.: Global dynamics of an SEIRI epidemiological model with time delay. Appl. Math. Comput. 232, 436–444 (2014)

    MathSciNet  MATH  Google Scholar 

  57. Xu, R., Ma, Z.: Global stability of a delayed SEIRS epidemic model with saturation incidence rate. Nonlinear Dyn. 61(1–2), 229–239 (2010)

    MathSciNet  MATH  Google Scholar 

  58. Xu, S.: Global stability of the virus dynamics model with Crowley–Martin functional response. Electron. J. Qual. Theory Differ. Equ. 2012(9), 1–10 (2012)

    MathSciNet  Google Scholar 

  59. Yang, H., Wei, J.: Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes immune response. Nonlinear Dyn. 82(1–2), 713–722 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Yuan, Z., Ma, Z., Tang, X.: Global stability of a delayed HIV infection model with nonlinear incidence rate. Nonlinear Dyn. 68(1–2), 207–214 (2012)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, X., Liu, X.: Backward bifurcation of an epidemic model with saturated treatment function. J. Math. Anal. Appl. 348(1), 433–443 (2008)

    MathSciNet  MATH  Google Scholar 

  62. Zhonghua, Z., Yaohong, S.: Qualitative analysis of a SIR epidemic model with saturated treatment rate. J. Appl. Math. Comput. 34(1–2), 177–194 (2010)

    MathSciNet  MATH  Google Scholar 

  63. Zhou, L., Fan, M.: Dynamics of an SIR epidemic model with limited medical resources revisited. Nonlinear Anal. Real World Appl. 13(1), 312–324 (2012)

    MathSciNet  MATH  Google Scholar 

  64. Zhou, T., Zhang, W., Lu, Q.: Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function. Appl. Math. Comput. 226, 288–305 (2014)

    MathSciNet  MATH  Google Scholar 

  65. Zhou, X., Cui, J.: Analysis of stability and bifurcation for an SEIV epidemic model with vaccination and nonlinear incidence rate. Nonlinear Dyn. 63(4), 639–653 (2011)

    MathSciNet  Google Scholar 

  66. Zhou, X., Cui, J.: Global stability of the viral dynamics with Crowley–Martin functional response. Bull. Korean Math. Soc. 48(3), 555–574 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to Council of Scientific & Industrial Research (CSIR) India for providing financial support through Project No.- CSIR-25(0277)/17/EMR-II to the first author (RKU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Kumar Upadhyay.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical standard

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, R.K., Pal, A.K., Kumari, S. et al. Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates. Nonlinear Dyn 96, 2351–2368 (2019). https://doi.org/10.1007/s11071-019-04926-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04926-6

Keywords

Navigation