Skip to main content
Log in

The Elusive Nature of Executive Functions: A Review of our Current Understanding

  • Published:
Neuropsychology Review Aims and scope Submit manuscript

Abstract

Executive functions include abilities of goal formation, planning, carrying out goal-directed plans, and effective performance. This article aims at reviewing some of the current knowledge surrounding executive functioning and presenting the contrasting views regarding this concept. The neural substrates of the executive system are examined as well as the evolution of executive functioning, from development to decline. There is clear evidence of the vulnerability of executive functions to the effects of age over lifespan. The first executive function to emerge in children is the ability to inhibit overlearned behavior and the last to appear is verbal fluency. Inhibition of irrelevant information seems to decline earlier than set shifting and verbal fluency during senescence. The sequential progression and decline of these functions has been paralleled with the anatomical changes of the frontal lobe and its connections with other brain areas. Generalization of the results presented here are limited due to methodological differences across studies. Analysis of these differences is presented and suggestions for future research are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acevedo, A., Lowenstein, D. A., Barker, W. W., Harwood, D. G., Luis, C., & Bravo, M., et al. (2000). Category fluency test: A normative data for English and Spanish-speaking elderly. Journal of the International Neuropsychological Society, 6, 760–769.

    PubMed  CAS  Google Scholar 

  • Anderson, V. (2001). Assessing executive functions in children: Biological, psychological, and developmental considerations. Developmental Neurorehabilitation, 4, 119–136.

    Article  CAS  Google Scholar 

  • Anderson, P. (2002). Assessment and development of executive function during childhood. Child Neuropsychology, 8, 71–82.

    PubMed  Google Scholar 

  • Anderson, P., Anderson, V., & Lajoie, G. (1996). The Tower of London Test: Validation and standardization for pediatric population. Clinical Neuropsychologist, 10(1), 64–65.

    Google Scholar 

  • Anderson, V., Anderson, P., Northam, E., Jacobs, R., & Catroppa, C. (2001a). Development of executive functions through late childhood and adolescence in an Australian sample. Developmental Neuropsychology, 20(1), 385–406.

    PubMed  CAS  Google Scholar 

  • Anderson, V., Fenwick, T., Manly, T., & Robertson, I. (1998). Attentional skills following traumatic brain injury in childhood: A componential analysis. Brain Injury, 12, 937–949.

    PubMed  CAS  Google Scholar 

  • Anderson, V., Levin, H., & Jacobs, R. (2002). Executive functions after frontal lobe injury: A developmental perspective. In D. T. Stuss, & R. T. Knight (Eds.) Principles of frontal lobe function (pp. 504–527). New York: Oxford University Press.

    Google Scholar 

  • Anderson, V., Northam, E., Hendy, J., & Wrenall, J. (2001b). Developmental neuropsychology: A clinical approach. New York: Psychology Press.

    Google Scholar 

  • Andrés, P., & van der Linden, M. (2000). Age-related differences in supervisory attentional system functions. Journal of Gerontology, 55, 373–380.

    Google Scholar 

  • Ardila, A., Ostrosky-Solis, F., Rosselli, M., & Gomez, C. (2000a). Age-related cognitive decline: The complex effect of education. Archives of Clinical Neuropsychology, 15, 495–513.

    PubMed  CAS  Google Scholar 

  • Ardila, A., Pineda, D., & Rosselli, M. (2000b). Correlation between intelligence test scores and executive function measures. Archives of Clinical Neuropsychology, 15, 31–36.

    PubMed  CAS  Google Scholar 

  • Ardila, A., Rosselli, M., Matute, E., & Guajardo, G. (2005). The influence of the parents’ educational level on the development of executive functions. Developmental Neuropyschology, 28, 539–560.

    Google Scholar 

  • Ardila, A., & Surloff, C. (2002). Dysexecutive syndrome. www.Medlink.com, Neurology.

  • Ardila, A., & Surloff, C. (2004). Dysexecutive syndromes. Medlink Neurology. San Diego: Arbor Publishing Co.

    Google Scholar 

  • Army Individual Test Battery (1944). Manual of directions and scoring. Washington, DC: War Department, Adjutant General’s Office.

    Google Scholar 

  • Audenaert, K., Brans, B., van Laere, K., Lahorte, P., Versijpt, J., & van Heeringen, K., et al. (2000). Verbal fluency as a prefrontal activation probe: A validation study using 99mTc-ECD brain SPET. European Journal of Nuclear Medicine, 27, 1800–1808.

    PubMed  CAS  Google Scholar 

  • Auriacombe, S., Fabriogoule, C., Lafont, S., Amieva, H., Jacquim-Gadda, H., & Dartigues, J. F. (2001). Letter and category fluency in normal elderly participants: A population based study. Aging, Neuropsychology, and Cognition, 8, 98–108.

    Google Scholar 

  • Axelrod, B. N., & Henry R. R. (1992). Age-related performance on the Wisconsin card sorting, similarities, and controlled oral word association tests. Clinical Neuropsychologist, 6(1), 16–26.

    Google Scholar 

  • Baddeley, A. (1986). Working memory. Oxford: Oxford University Press.

    Google Scholar 

  • Baddeley, A. D. (1992). Working memory. Science, 225, 556–559.

    Google Scholar 

  • Baddeley, A. (1998). The central executive: A concept and some misconceptions. Journal of the International Neuropsychological Society, 4, 523–526.

    PubMed  CAS  Google Scholar 

  • Baddeley, A. (2002). Fractionating the central executive. In D. T. Stuss, & R. T. Knight (Eds.) Principles of frontal lobe function (pp. 246–260). New York, NY: Oxford University Press.

    Google Scholar 

  • Baddeley, A., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.) Recent advances in learning and motivation (vol. 8). New York: Academic.

    Google Scholar 

  • Baddeley, A., & Logie, R. (1999). Working memory: The multiple-component model. In A. Miyake, & P. Shah (Eds.) Models of working memory: Mechanisms of active maintenance and executive control (pp. 28–61). New York: Cambridge University Press.

    Google Scholar 

  • Baddeley, A., & Wilson, B. (1988). Frontal amnesia and the dysexecutive syndrome. Brain and Cognition, 7, 212–230.

    PubMed  CAS  Google Scholar 

  • Band, G., Ridderinkhof, K. R., & Segalowitz, S. (2002). Explaining neurocognitive aging: Is one factor enough. Brain and Cognition, 49, 259–267.

    PubMed  Google Scholar 

  • Banich, M. T. (2004). Cognitive neuroscience and neuropsychology. Boston: Houghton Mifflin.

    Google Scholar 

  • Barkley, R. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory. Psychological Bulletin, 121, 65–94.

    PubMed  CAS  Google Scholar 

  • Belleville, S., Rouleau, N., & van der Linden, M. (2006). Use of the Hayling task to measure inhibition of prepotent responses in normal aging and Alzheimer’s disease. Brain and Cognition, 62, 113–119.

    PubMed  Google Scholar 

  • Benton, A. L., & Hamsher, K. (1989). Multilingual aphasia examination. Iowa City, IA: AJA.

    Google Scholar 

  • Berg, E. A. (1948). A simple objective technique for measuring flexibility in thinking. Journal of General Psychology, 39, 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Berman, K., Ostrem, J., Randolph, C., Gold, J., Goldberg, T., Coppola, R., Carson, R., Herscovitch, P., & Weinberger, D. (1995). Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study. Neuropsychologia, 33, 1027–1046.

    PubMed  CAS  Google Scholar 

  • Bialystok, E., Craik, F., Klein, R., & Viswanathan, M. (2004). Bilingualism, aging and cognitive control: Evidence from the Simon task. Psychology and Aging, 19, 290–303.

    PubMed  Google Scholar 

  • Boone, K. B. (1999). Neuropsychological assessment of executive functions: Impact of age, education, gender, intellectual level, and vascular status on executive test scores. In B. L. Miller, & J. L. Cummings (Eds.) The human frontal lobes: Functions and disorders (pp. 247–261). New York: Guildford.

    Google Scholar 

  • Borkowsky, J. G., & Burke, J. E. (1996). Theories, models and measurements of executive functioning: An information processing perspective. In G. R. Lyon, & N. A. Krasnegor (Eds.) Attention, memory and executive function. Baltimore: Paul H. Brookes.

    Google Scholar 

  • Brennan, M., Welsh, M. C., & Fisher, C. B. (1997). Aging and executive function skills: An examination of a community-dwelling older population. Perceptual and Motor Skills, 84, 1187–1197.

    PubMed  CAS  Google Scholar 

  • Brickman, A., Paul, R., Cohen, R., William, L., MacGreggor, K., Jefferson, A., Tate, D., Gunstad, J., & Gordon, E. (2005). Category and letter verbal fluency across the adult lifespan: Relationship to EEG theta power. Archives of Clinical Neuropsychology, 20, 561–573.

    PubMed  Google Scholar 

  • Brocki, K. C., & Bohlin, G. (2004). Executive functions in children aged 6 to 13: A dimensional and developmental study. Developmental Neuropsychology, 26(2), 571–593.

    PubMed  Google Scholar 

  • Bryan, J., & Luszcz, M. (2001). Adult age differences in self-ordered pointing task performance: Contributions from working memory, executive function and speed of information processing. Journal of Clinical and Experimental Neuropsychology, 23, 608–619.

    PubMed  CAS  Google Scholar 

  • Burgess, P. (1997). Theory and methodology in executive function research. In P. Rabbitt (Ed.) Methodology of frontal executive function (pp. 81–116). Hove, East Sussex: Psychology Press.

    Google Scholar 

  • Burgess, P., Alderman, N., Evans, J., Emslie, H., & Wilson, B. (1998). The ecological validity of tests of executive functions. Journal of the International Neuropsychological Society, 4, 547–558.

    PubMed  CAS  Google Scholar 

  • Burgess, P. W., & Shallice, T. (1997). The Hayling and Brixton Tests. Bury St. Edmunds, UK: Thames Valley Test.

    Google Scholar 

  • Cahn-Weiner, D., Malloy, P., Boyle, P., Marran, M., & Salloway, S. (2000). Prediction of functional status from neuropsychological tests in community-dwelling elderly individuals. Clinical Neuropsychology, 14, 187–195.

    CAS  Google Scholar 

  • Catafau, A., Parellada, E., Lomena, F., Bernardo, M., Setoain, J., & Catarineu, S., et al. (1998). Role of the cingulate gyrus during the Wisconsin Card Sorting Test: A single photon emission computed tomography study in normal volunteers. Psychiatry Research: Neuroimaging, 26, 67–74.

    Google Scholar 

  • Chaytor, N., Schmitter-Edgecombe, M., & Burr, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21, 217–227.

    PubMed  Google Scholar 

  • Chugani, H. T., Phelps, M. E., & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 287–297.

    Google Scholar 

  • Collette, T., & van der Linden, M. (2002). Brain imaging of the central executive component of working memory. Neuroscience and Biobehavior Review, 26, 105–125.

    Google Scholar 

  • Collette, F., Van der Linden, M., Delfiore, G., Degueldre, C., Luxen, A., & Salmon, E. (2001). The functional anatomy of inhibition processes investigated with the Hayling task. Neuroimage, 14, 258–267.

    PubMed  CAS  Google Scholar 

  • Collette, T., van der Linden, M., Laureys, S., Delfiore, G., Degueldre, C., & Luxen, A., et al. (2005). Exploring the unity and diversity of the neural substrates of executive functioning. Human Brain Mapping, 25, 409–423.

    PubMed  Google Scholar 

  • Crawford, J., Bryan, J., Luszcz, M., Obonsawin, M., & Stewart, L. (2000). The executive decline hypothesis of cognitive aging: Do executive deficits qualify as differential deficit and do they mediate age-related memory decline? Aging, Neuropsychology and Cognition, 7, 9–31.

    Google Scholar 

  • Crawford, S., & Channon, S. (2002). Dissociation between performance on abstract tests of executive function and problem solving in real-life type situations in normal aging. Aging & Mental Health, 6, 12–21.

    CAS  Google Scholar 

  • Crossley, M., D’Arcy, C., & Rawson, N. S. (1997). Letter and category fluency in community-dwelling Canadian seniors: A comparison of normal participants to those with dementia of the Alzheimer or vascular type. Journal of Clinical and Experimental Neuropsychology, 19, 52–62.

    PubMed  CAS  Google Scholar 

  • Crinella, F., & Yu, J. (2000). Brain mechanisms and intelligence psychometric g and executive functions. Intelligence, 27(4), 299–327.

    Google Scholar 

  • Dagher, A., Owen, A., Boecker, H., & Brooks, D. (1999). Mapping the network for planning: A correlational PET activation study with the Tower of London task. Brain, 122, 1973–1987.

    PubMed  Google Scholar 

  • Dahua, W., Jiliang, S., Huamao, P., Dan, T., & Liang, Z. (2005). The model of educational effect on old adults’ cognition. Acta Psychologica Sinica, 37, 511–516.

    Google Scholar 

  • Daigneault, S., & Braun, C. M. (1993). Working memory and the self-ordered pointing task: Further evidence of early prefrontal decline in normal aging. Journal of Clinical and Experimental Neuropsychology, 15, 881–895.

    PubMed  CAS  Google Scholar 

  • Daigneault, S., Braun, C. M., & Whitaker, H. A. (1992). Early effects of normal aging on perseverative and non-perseverative prefrontal measures. Developmental Neuropsychology, 8, 99–114.

    Google Scholar 

  • Daigneault, G., Joly, P., & Frigon, J. Y. (2002). Executive functions in the evaluation of accident risk of older individuals. Journal of Clinical and Experimental Neuropsychology, 2, 221–238.

    Google Scholar 

  • Davis, H., & Klebe, K. (2001). A longitudinal study of the performance of the elderly and young on the Tower of Hanoi puzzle and Rey recall. Brain and Cognition, 46, 95–99.

    PubMed  CAS  Google Scholar 

  • De Frias, C., Dixon, R., & Strauss, E. (2006). Structure of tour executive functioning tests in healthy older adults. Neuropsychology, 20, 206–214.

    PubMed  Google Scholar 

  • Delis, D., Kaplan, E., & Kramer, N. (2001). Delis–Kaplan executive function system. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

  • De Luca, C., Wood, S., Anderson, V., Buchanan, J., Proffit, R., & Mahony, K., et al. (2003). Normative data from the Cantab: Development of executive function over the lifespan. Journal of Clinical and Experimental Neuropsychology, 25, 242–254.

    PubMed  Google Scholar 

  • Denckla, M. B. (1996). A theory and model of executive function: A neuropsychological perspective. In G. Lyon, & N. Krasnegor (Eds.) Attention, memory and executive function. Maryland: Paul Brooks.

    Google Scholar 

  • Desman, C., Schneider, A., Ziegler-Kirbach, E., Peterman, F., Mohr, B., & Hampel, P. (2006). Behavioral inhibition and emotion regulation among boys with ADHD during a go-no-go task. Praxis der Kinderpsychologie und Kinderpsychiatrie, 55, 328–349.

    PubMed  Google Scholar 

  • D’Esposito, M., Postle, B., Ballard, D., & Lease, J. (1999). Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain and Cognition, 41, 66–86.

    PubMed  CAS  Google Scholar 

  • Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood. In D. T. Stuss, & R. T. Knight (Eds.) Principles of frontal lobe function (pp. 466–503). New York, NY: Oxford University Press.

    Google Scholar 

  • Diamond, A., & Goldman-Rakic, P. (1985). Evidence for involvement of prefrontal cortex in cognitive changes during the first year of life: Comparison of human infants and rhesus monkeys on a detour task with transparent barrier. Neurosciences Abstracts, 11, 832.

    Google Scholar 

  • Diamond, A., & Goldman-Rakic, P. (1989). Comparison of human infants and rhesus monkeys on Piaget’s AB task: Evidence for dependence on dorsolateral prefrontal cortex. Experimental Brain Research, 74, 24–40.

    CAS  Google Scholar 

  • Dickstein, S., Bannon, K., Castellanos, F. X., & Milham, M. (2006). The neural correlates of attention deficit hyperactivity disorder: An ALE meta-analysis. Journal of Child Psychology and Psychiatry, 47, 1051–1062.

    PubMed  Google Scholar 

  • Du Boisegueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., & Kinkingneheun, S., et al. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain, 129, 3315–3328.

    Google Scholar 

  • Duncan, J., Burgess, P., & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsichologia, 33, 261–268.

    CAS  Google Scholar 

  • Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer, C. (1996). Intelligence and the frontal lobes: The organization of goal-directed behavior. Cognitive Psychology, 30, 257–303.

    PubMed  CAS  Google Scholar 

  • Eldreth, D., Patterson, M., Porcelli, A., Biswal, B., Rebbechi, D., & Rypma, B. (2006). Evidence for multiple manipulation processes in prefrontal cortex. Brain Research, 1123, 145–156.

    PubMed  CAS  Google Scholar 

  • Elliot, R. (2003). Executive functions and their disorders. British Medical Bulletin, 65, 49–59.

    Google Scholar 

  • Espy, K. (1997). The shape school: Assessing executive function in preschool children. Developmental Neuropsychology, 13, 495–499.

    Google Scholar 

  • Fassbender, C., Murphy, K., Foxe, J., Wylie, G., Javitt, D., & Robertson, I., et al. (2004). A topography of executive functions and their interactions revealed by functional magnetic resonance imaging. Brain Research, Cognitive Brain Research, 20, 132–143, happiness.

    Google Scholar 

  • Fisk, J. E., & Sharp, C. A. (2004). Age-related impairment in executive functioning: Updating, inhibition, shifting, and access. Journal of Clinical and Experimental Neuropsychology, 26, 874–890.

    PubMed  Google Scholar 

  • Fisk, J. E., & Warr, P. (1996). Age and working memory: The role of perceptual speed, the central executive and the phonological loop. Psychology and Aging, 11, 316–323.

    PubMed  CAS  Google Scholar 

  • Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., Defries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172–179.

    PubMed  Google Scholar 

  • Frith, C., Friston, K., Liddle, P., & Frackowiak, R. (1991). A PET study of word finding. Neuropsychologia, 29, 1137–1148.

    PubMed  CAS  Google Scholar 

  • Fuster, J. (1993). Frontal lobes. Current Opinion in Neurobiology, 3, 160–165.

    PubMed  CAS  Google Scholar 

  • Fuster, J. (2002). Physiology of executive functions: The perception–action cycle. In D. T. Stuss, & R. T. Knight (Eds.) Principles of the frontal lobe. New York: Oxford University Press.

    Google Scholar 

  • Garden, S., Phillips, L., & MacPherson, S. (2001). Midlife aging, open-ended planning, and laboratory measures of executive function. Neuropsychology, 15, 472–482.

    PubMed  CAS  Google Scholar 

  • Gerstadt, C., Hong, Y. J., & Diamond, A. (1994). The relationship between cognition and action: Performance of children 3 1/2–7 years old on a Stroop-like day–night test. Cognition, 53, 129–153.

    PubMed  CAS  Google Scholar 

  • Gerton, B., Brown, T., Meyer-Lindenberg, A., Kohn, P., Holt, J., & Olsen, R., et al. (2004). Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia, 42, 1781–1787.

    PubMed  Google Scholar 

  • Gioia, G., & Isquith, P. (2004). Ecological assessment of executive function in traumatic brain injury. Developmental Neuropsychology, 25, 135–158.

    PubMed  Google Scholar 

  • Gioia, G., Isquith, P., Guy, S., & Kenworthy, L. (2000). Behavior rating inventory of executive functions. Lutz, FL: Psycological Assessment Resources.

    Google Scholar 

  • Girgis, R., Minshew, N., Melhem, N., Nutche, J., Keshavan, M. S., & Hardan, A. (2007). Volumetric alterations of the orbitofrontal cortex in autism. Progress in Neuro-psychopharmacology, & Biological Psychiatry, 31, 41–45.

    Google Scholar 

  • Glosser, G., & Goodglass, H. (1990). Disorders of executive function among aphasic and other brain-damaged patients. Journal of Clinical and Experimental Neuropsychology, 12, 485–501.

    PubMed  CAS  Google Scholar 

  • Godefroy, O., Cabaret, M., Petit-Chenal, V., Pruvo, J.-P., & Rousseaux, M. (1999). Control functions of the frontal lobe: Modularity of the central-supervisory system. Cortex, 35, 1–20.

    PubMed  CAS  Google Scholar 

  • Goethals, I., Audenaert, K., Jacobs, F., van der Wiele, C., Pyck, H., & Ham, H., et al. (2004). Application of a neuropsychological activation probe with SPECT: The ‘Tower of London’ task in healthy volunteers. Nuclear Medicine Communications, 25, 177–182.

    PubMed  Google Scholar 

  • Golberg, E. (2001). The executive brain: Frontal lobes and the civilized mind. New York: Oxford University Press.

    Google Scholar 

  • Golden, C. J. (1978). Stroop color and word test: A manual for clinical and experimental uses. Chicago, IL: Stoelting.

    Google Scholar 

  • Grace, J., & Malloy, P. F. (2002). Frontal system behavioral scale. Odessa, FL: Psychological Assessment Resources.

    Google Scholar 

  • Grafman, J. (1999). Experimental assessment of adult frontal lobe. In B. L. Miller, & J. L. Cummings (Eds.) The human frontal lobes (pp. 321–344). New York: Guildford.

    Google Scholar 

  • Greenwood, P. (2000). The frontal aging hypothesis evaluated. Journal of the International Neuropsychological Society, 6, 705–726.

    PubMed  CAS  Google Scholar 

  • Grigsby, J., Kaye, K., Shetterly, S. M., Baxter, J., Morgenstern, N., & Hamman, R. F. (2002). Prevalence of disorders of executive cognitive functioning among the elderly: Findings from the San Luis Valley health and aging study. Neuroepidemiology, 21, 213–220.

    PubMed  Google Scholar 

  • Grigsby, J., Kaye, K., Baxter, J., Shetterly, S. M., & Hamman, R. F. (1998). Executive cognitive abilities and functional status among community-dwelling older persons in the San Luis Valley Health and Aging Study. Journal of the American Geriatrics Society, 46, 590–596.

    PubMed  CAS  Google Scholar 

  • Haaland, K., Vranes, L., Goodwin, J., & Garry, P. (1987). Wisconsin Card Sort performance in a healthy elderly population. Journal of Gerontology, 42, 345–346.

    PubMed  CAS  Google Scholar 

  • Haarmann, H., Ashling, G., Davelaar, E., & Usher, M. (2005). Age-related declines in context maintenance and semantic short-term memory. Journal of Experimental Psychology: Section A, 58, 34–53.

    Google Scholar 

  • Harris, P. L. (1974). Perseverative search at a visibly empty place by young infants. Journal of Experimental Child Psychology, 18, 535–542.

    Google Scholar 

  • Hasher, L., Tonev, S. T., Lustig, C., & Zacks, R. T. (2001). Inhibitory control, environmental support, and self-initiated processing in aging. In M. Naveh-Benjamin, M. Moscovitch, & R. L. Roediger (Eds.) Perspectives on human memory and cognitive aging: Essays in honour of Fergus Craik. East Sussex: Psychology Press.

    Google Scholar 

  • Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In G. H. Bower (Ed.) The psychology of learning and motivation. New York: Academic.

    Google Scholar 

  • Hashimoto, R., Meguro, K., Lee, E., Kasai, M., Ishii, H., & Yamaguchi, S. (2006). Effect of age and education on the TMT and determination of normative data for Japanese elderly people: The Tajin Project. Psychiatry and Clinical Neurosciences, 60, 422–428.

    PubMed  Google Scholar 

  • Haug, H., & Eggers, R. (1991). Morphometry of the human cortex cerebri and corpus striatum during aging. Neurobiology of Aging, 12, 336–338.

    PubMed  CAS  Google Scholar 

  • Hill, E. (2004). Executive dysfunction in autism. Trends in Cognitive Sciences, 8, 26–32.

    PubMed  Google Scholar 

  • Hirshorn, E. A., & Thompson-Schill, S. L. (2006). Role of the left inferior frontal gyrus in covert word retrieval: Neural correlates of switching during verbal fluency. Neuropsychologia, 44, 2547–2557.

    PubMed  Google Scholar 

  • Hobson, P., & Leeds, L. (2001). Executive functioning in older people. Reviews in Clinical Gerontology, 11, 361–372.

    Google Scholar 

  • Hudson, J. A., Shapiro, L. R., & Sosa, B. B. (1995). Planning in the real world: Preschool children’s scripts and plans for familiar events. Child Development, 66, 984–998.

    PubMed  CAS  Google Scholar 

  • Hughes, C., & Graham, A. (2002). Measuring executive functions in childhood: Problems and solutions. Child and Adolescent Mental Health, 7, 131–142.

    Google Scholar 

  • Hughes, C., Russel, J., & Robbins, T. W. (1994). Evidence for executive dysfunction in autism. Neuropsychologia, 32, 477–492.

    PubMed  CAS  Google Scholar 

  • Huppert, F., Bravne, F., Paykel, E., & Beardsall, L. (1995). CAMCOG—a concise neuropsychological test to assist dementia diagnosis: Socio-demographic determinants in an elderly population sample. British Journal of Clinical Psychology, 34, 529–541.

    PubMed  Google Scholar 

  • Hurks, P., Vles, J., Hendriksen, J., Kalff, A., Feron, F., & Kroes, M., et al. (2006). Semantic category fluency versus initial letter fluency over 60 seconds as a measure of automatic and controlled processing in healthy school-aged children. Journal of Clinical and Experimental Neuropsychology, 28, 684–695.

    PubMed  CAS  Google Scholar 

  • Isquith, P., Gioia, G., & Espy, K. (2004). Executive function in preschool children: Examination through everyday behavior. Developmental Neuropsychology, 26, 403–422.

    PubMed  Google Scholar 

  • Izaks, G., & Westendorp, R. (2003). Ill or just old? Towards a conceptual framework on the relation between aging and disease. BMC Geriatrics, 3, 7.

    PubMed  Google Scholar 

  • Jahanshahi, M., Dirnberger, G., Fuller, R., & Frith, C. (2000). The role of the dorsolateral prefrontal cortex in random number generation: A study with positron emission tomography. Neuroimage, 12, 713–725.

    PubMed  CAS  Google Scholar 

  • Kassubek, J., Juengling, F. D., Ecker, D., & Landwehrmeyer, G. B. (2005). Thalamic atrophy in Huntington’s disease co-varies with cognitive performance: A morphometric MRI analysis. Cerebral Cortex, 15, 846–853.

    PubMed  Google Scholar 

  • Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., & Golaszewski, S., et al. (2005). Neural correlates of distance and congruity effects in a numerical Stroop task: An event-related fMRI study. Neuroimage, 15, 888–898.

    Google Scholar 

  • Keys, B., & White, D. (2000). Exploring the relationship between age, executive abilities, and psychomotor speed. Journal of the International Neuropsychological Society, 6, 76–82.

    PubMed  CAS  Google Scholar 

  • Kimberg, D., D’Esposito, M., & Farah, M. (1997). Cognitive functions in the prefrontal cortex—working memory and executive control. Current Directions in Psychological Science, 6, 185–192.

    Google Scholar 

  • Klenberg, L., Korkman, M., & Lahti-Nuuttila, P. (2001). Differential development of attention and executive functions in 3 to 12-year-old Finnish children. Developmental Neuropsychology, 20, 407–428.

    PubMed  CAS  Google Scholar 

  • Koechlin, E., Corrado, G., Pietrini, P., & Grafman, J. (2000). Dissociating. the role of the medial and lateral anterior prefrontal cortex in human planning. Proceedings of the National Academy of Science of the United States of America, 97, 7651–7656.

    CAS  Google Scholar 

  • Lafleche, G., & Albert, M. (1995). Executive function deficits in mild Alzheimer’s disease. Neuropsychology, 9, 313–320.

    Google Scholar 

  • Lazeron, R. H., Rombouts, S. A., Machielsen, W. C., Scheltens, P., Witter, M. P., & Uylings, H. B., et al. (2000). Visualizing brain activation during planning: The tower of London test adapted for functional MR imaging. American Journal of Neuroradiology, 21, 1407–1414.

    PubMed  CAS  Google Scholar 

  • Lehto, J. (1996). Are executive function tests dependent on working memory capacity. Quarterly Journal of Experimental Psychology, 49, 29–50.

    Google Scholar 

  • Levin, H., Culhane, K., Hartmann, J., Evankovich, K., Mattson, A., & Harwood, H. (1991). Developmental changes in performance on tests of purported frontal lobe functions. Developmental Neuropsychology, 7, 377–396.

    Google Scholar 

  • Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2004). Striatal contributions to working memory: A functional magnetic resonance imaging study in humans. European Journal of Neuroscience, 19, 755–760.

    PubMed  Google Scholar 

  • Lezak, M. D. (1983). Neuropsychological assessment (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). New York: Oxford University Press.

    Google Scholar 

  • Lie, C., Specht, K., Marshall, J., & Fink, G. (2006). Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage, 15, 1038–1049.

    Google Scholar 

  • Lombardi, W., Andreason, P., Sirocco, K., Rio, D., Gross, R., & Umhau, J., et al. (1999). Wisconsin Card Sorting Test performance following head injury: Dorsolateral fronto-striatal circuit activity predicts perseveration. Journal of Clinical and Experimental Neuropsychology, 21, 2–16.

    PubMed  CAS  Google Scholar 

  • Luria, A. R. (1973). The Working brain: An introduction to neuropsychology. New York: Basic.

    Google Scholar 

  • Lustig, C., Hasher, L., & Tonev, S. (2001). Inhibitory control over the present and the past. European Journal of Cognitive Psychology, 13, 107–122.

    Google Scholar 

  • MacPherson, S., Phillips, L., & DellaSala, S. (2002). Age, executive function, and social decision making: A dorsolateral prefrontal theory of cognitive aging. Psychology and Aging, 4, 598–609.

    Google Scholar 

  • Mani, T., Bedwell, J., & Miller, S. (2005). Age-related decrements in performance on a brief continuous performance test. Archives of Clinical Neuropsychology, 20, 575–586.

    PubMed  Google Scholar 

  • Manly, J., Schumpf, N., Tang, M., & Stern, Y. (2005). Cognitive decline and literacy among ethnically diverse elders. Journal of Geriatric Psychiatry and Neurology, 18, 213–217.

    PubMed  Google Scholar 

  • Matute, E., Rosselli, M., Ardila, A., & Morales, L. (2004). Verbal and non-verbal fluency in Spanish speaking children. Developmental Neuropsychology, 26(2), 647–660.

    PubMed  Google Scholar 

  • Mejia, S., Pineda, D., Alvarez, L., & Ardila, A. (1998). Individual Differences in memory and executive function abilities during normal aging. International Journal of Neuroscience, 95, 271–284.

    PubMed  CAS  Google Scholar 

  • Miller, A. K., Alston, R. L., & Corselli, J. A. (1980). Variation with age in the volumes of grey and white matter in the cerebral hemispheres of man: Measurements with an image analyzer. Neuropathology and Applied Neurobiology, 6, 119–132.

    Article  PubMed  CAS  Google Scholar 

  • Mitrushina, K. M., Boone, K. B., Razani, J., & D’Elia, L. F. (2005). Handbook of normative data for neuropsychological assessment, second edition. New York: Oxford University Press.

    Google Scholar 

  • Miyake, A., Friedman, N., Emerson, M., Witzki, A., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    PubMed  CAS  Google Scholar 

  • Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annuals of Neurology, 59, 257–264.

    Google Scholar 

  • Morris, R., Ahmed, S., Syed, G., & Toone, B. (1993). Neural correlates of planning ability: Frontal lobe activation during the Tower of London test. Neuropsychologia, 31, 1367–1378.

    PubMed  CAS  Google Scholar 

  • Nagahama, Y., Okada, T., Katsumi, Y., Hayashi, Y., Yamauchi, H., & Oyanagi, Y., et al. (2001). Dissociable mechanisms of attentional control within the human prefrontal cortex. Cerebral Cortex, 11, 85–92.

    PubMed  CAS  Google Scholar 

  • Nathan, J., Wilkinson, D., Stammers, S., & Low, L. (2001). The role of tests of frontal executive function in the detection of mild dementia. International Journal of Geriatric Psychiatry, 16, 18–26.

    PubMed  CAS  Google Scholar 

  • Nelson, H. E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex, 12(4), 313–324.

    PubMed  CAS  Google Scholar 

  • Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, et al. (Ed.) Consciousness and self-regulation (vol. 4, (pp. 1–18)). New York: Plenum.

    Google Scholar 

  • Norris, G., & Tate, R. (2000). The Behavioral Assessment of the Dysexecutive Syndrome (BADS): Ecological, concurrent and construct validity. Neuropsychological Rehabilitation, 11, 33–45.

    Article  Google Scholar 

  • Obonsawin, M. C., Crawford, J. R., Page, J., Chalmers, P., Cochrane, R., & Low, G. (2002). Performance on test of frontal lobe function reflect general intellectual ability. Neuropsychologia, 40, 970–977.

    PubMed  CAS  Google Scholar 

  • Odhuba, R., van den Broek, M., & Johns, L. (2005). Ecological validity of measures of executive functioning. British Journal of Clinical Psychology, 44, 269–278.

    PubMed  CAS  Google Scholar 

  • Ostrosky-Solis, F., Gutierrez, A. L., Flores, M. R., & Ardila, A. (2007). Same or different? Semantic verbal fluency across Spanish-speakers from different countries. Archives of Clinical Neuropsychology, 22, 367–377.

    PubMed  Google Scholar 

  • Owen, A., Doyon, J., Petrides, M., & Evans, A. (1996). Planning and spatial working memory: A positron emission tomography study in humans. European Journal of Neuroscience, 8, 353–364.

    PubMed  CAS  Google Scholar 

  • Ozonoff, S., Strayer, D. L., McMahon, W. M., & Filloux, F. (1998). Inhibitory deficits in Tourette’s syndrome: A function of comorbidity and symptom severity. Journal of Child Psychiatry, 39, 1109–1118.

    CAS  Google Scholar 

  • Parkin, A. (1998). The central executive does not exist. Journal of the International Neuropsychological Society, 4, 518–522.

    PubMed  CAS  Google Scholar 

  • Parkin, A., & Java, R. (1999). Deterioration of frontal lobe function in normal aging: Influences of fluid intelligence versus perceptual speed. Neuropsychology, 13, 539–545.

    PubMed  CAS  Google Scholar 

  • Parkin, A., Walter, B., & Hunkin, N. (1995). Relationship between normal aging, frontal lobe function, and memory for temporal and spatial information. Neuropsychology, 9, 304–312.

    Google Scholar 

  • Passler, M., Issac, W., & Hynd, G. (1985). Neuropsychological development of behavior attributed to the frontal lobe functioning in children. Developmental Neuropsychology, 1(4), 349–370.

    Google Scholar 

  • Paulesu, E., Goldacre, B., Scifo, P., Cappa, S., Gilardi, M., & Castiglioni, I., et al. (1997). Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. Neuroreport, 27, 2011–2017.

    Article  Google Scholar 

  • Pennington, B. F., Bennetto, L., McAleer, O., & Roberts, R. J. (1996). Executive functions and working memory; theoretical and measurement issues. In G. R. Lyon, & N. A. Krasnegor (Eds.) Attention, memory, and executive function. Baltimore, MD: Paul H. Brookes.

    Google Scholar 

  • Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37, 51–87.

    PubMed  CAS  Google Scholar 

  • Perianez, J. A., Maestu, F., Barcelo, F., Fernandez, A., Amo, C., & Ortiz-Alonso, T. (2004). Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence. Neuroimage, 21, 687–695.

    PubMed  Google Scholar 

  • Phelps, E., Hyder, F., Blamire, A., & Shulman, R. (1997). FMRI of the prefrontal cortex during overt verbal fluency. Neuroreport, 8, 561–565.

    PubMed  CAS  Google Scholar 

  • Phillips, L. H., Kliegel, M., & Martin, M. (2006). Age and planning tasks: The influence of ecological validity. International Journal of Aging & Human Development, 62, 175–184.

    Google Scholar 

  • Piaget, J. (1954). The Construction of Reality in the Child. Oxford: Basic.

    Google Scholar 

  • Piguet, O., Grayson, G., Browe, A., Tate, H., Lye, T., & Creasey, H., et al. (2002). Normal aging and executive functions in “old-old” community dwellers: Poor performance is not an inevitable outcome. International Psychogeriatric Association, 14, 139–159.

    Google Scholar 

  • Pihlajamaki, M., Tanila, H., Hanninen, T., Kononen, M., Laakso, M., & Partanen, K., et al. (2000). Verbal fluency activates the left medial temporal lobe: A functional magnetic resonance imaging study. Annals of Neurology, 47, 1367–1313.

    Google Scholar 

  • Plumet, J., Gil, R., & Gaonac’h, D. (2005). Neuropsychological assessment of executive functions in women: Effects of age and education. Neuropsychology, 19(5), 566–577.

    PubMed  Google Scholar 

  • Racine, C. A., Barch, D. M., Braver, T. S., & Noelle, D. C. (2006). The effect of age on rule-based category learning. Neuropsychological Development and Cognition: Aging, Neuropsychology and Cognition, 13, 411–434.

    Google Scholar 

  • Rapp, M., & Reischies, F. (2005). Attention and executive control predict Alzheimer’s disease in late life: Results from the Berlin Aging Study (BASE). Journal of Geriatric Psychiatry, 13, 134–141.

    Google Scholar 

  • Reitan, R. M. (1955). The relation of the Trail Making Test to organic brain damage. Journal of Consulting Psychology, 19, 393–394.

    PubMed  CAS  Google Scholar 

  • Rekkas, V. (2006). Interference resolution in the elderly: Evidence suggestive of differences in strategy on measures of prepotent inhibition and dual task processing. Aging, Neuropsychology and Cognition, 13, 341–365.

    PubMed  Google Scholar 

  • Ridderinkhof, K. R., Span, M. M., & van der Molen, M. W. (2002). Perseverative behavior and adaptive control in older adults: Performance monitoring, rule induction, and set shifting. Brain and Cognition, 49, 382–401.

    PubMed  Google Scholar 

  • Riva, D., Nichelli, F., & Devoti, M. (2000). Developmental aspects of verbal fluency and confrontation naming in children. Brain and Language, 71, 267–284.

    PubMed  CAS  Google Scholar 

  • Robbins, T., James, M., Owen, A., Sahakian, B., Lawrence, A., & Mcinnes, L., et al. (1998). A study of performance on tests from the CANTAB batter sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Journal of the International Neuropsychological Society, 4, 474–490.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Aranda, C., & Martinussen, M. (2006). Age-related decline in performance of phonetic verbal fluency measured by the Controlled Oral Word Association Task (COWAT): A meta-analysis study. Developmental Neuropsychology, 30, 697–717.

    PubMed  Google Scholar 

  • Romine, C., & Reynolds, C. (2005). A model of the development of frontal lobe functioning: Findings from a meta-analysis. Applied Neuropsychology, 12, 190–201.

    PubMed  Google Scholar 

  • Rönnlund, M., Lövden, M., & Nilsson, L. G. (2001). Adult age differences in Tower of Hanoi performance: Influence from demographic and cognitive variables. Aging, Neuropsychology and Cognition, 8, 269–283.

    Article  Google Scholar 

  • Royall, P., Lauterbach, E. C., Cummings, J. L., Reeve, A., Rummans, T. A., & Kaufer, D. I., et al. (2002). Executive control function: A review of its promise and challenges for clinical research. Journal of Neuropsychiatry and Clinical Neuroscience, 14, 377–405.

    Google Scholar 

  • Rush, B. K., Barch, D. M., & Braver, T. S. (2006). Accounting for cognitive aging: Context processing, inhibition or processing speed? Neuropsychology, Development and Cognition. Section B: Aging, Neuropsychology and Cognition, 13, 588–610.

    Google Scholar 

  • Salat, D. H., Tuch, D. S., Henelone, N. D., Fischl, B., Corkin, S., & Rosas, H. D., et al. (2005). Age related changes in pre-frontal white matter measure by diffusion tensor imaging. Annals of the New York Academy of Science, 1064, 37–49.

    CAS  Google Scholar 

  • Salthouse, T. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103, 403–428.

    PubMed  CAS  Google Scholar 

  • Salthouse, T. (2005). Relations between cognitive abilities and measures of executive functioning. Neuropsychology, 19, 532–545.

    PubMed  Google Scholar 

  • Salthouse, T., Atkinson, T., & Berish, D. (2003). Executive functioning as a potential mediator of age-related cognitive decline in normal adults. Journal of Experimental Psychology: General, 132, 566–594.

    Google Scholar 

  • Salthouse, T. A., Siedlecki, K. L., & Krueger, L. E. (2006). An individual differences analysis of memory control. Journal of Memory and Language, 55, 102–125.

    Google Scholar 

  • Salthouse, T., Toth, J., Daniels, K., Parks, C., Pak, R., & Wolbrette, M., et al. (2000). Effects of aging on efficiency of task switching in a variant of the trail making test. Neuropsychology, 14, 102–111.

    PubMed  CAS  Google Scholar 

  • Scheres, A., Oosterlaan, J., Geurts, H., Morein-Zamir, S., Meiran, N., & Schut, H., et al. (2004). Executive functioning in boys with ADHD: Primarily an inhibition deficit? Archives in Clinical Neuropsychology, 19, 569–594.

    Google Scholar 

  • Schmitz, N., Rubia, K., Daly, E., Smith, A., Williams, S., Murphy, D. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 54(1), 7–16.

    Google Scholar 

  • Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society, Series B, 298, 199–209.

    CAS  Google Scholar 

  • Shallice, T. (2002). Fractionation of the supervisory system. In D. T. Stuss, & T. Knight (Eds.) Principles of frontal lobe function (pp. 261–277). New York: Oxford University Press.

    Google Scholar 

  • Shallice, T., & Burgess, P. W. (1991). Higher-order cognitive impairments and frontal lobe lesions in man. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.) Frontal lobe function and dysfunction (pp. 125–138). New York: Oxford University Press.

    Google Scholar 

  • Siegel, B., Nuechterlein, K., Abel, L., Wu, J., & Buchsbaum, M. (1995). Glucose metabolic correlates of continuous performance test performance in adults with a history of infantile autism, schizophrenics, and controls. Schizophrenia Research, 17, 85–94.

    PubMed  Google Scholar 

  • Simon, H. A. (1975). The functional equivalence of problem solving skills. Cognitive Psychology, 7, 268–288.

    Google Scholar 

  • Slattery, M., Garvey, M., & Swedo, S. (2001). Frontal–subcortical circuits: A functional developmental approach. In D. G. Lichter, & J. L. Cummings (Eds.) Frontal–subcortical circuits in psychiatric and neurological disorders (pp. 314–333). New York: Guilford.

    Google Scholar 

  • Span, M., Ridderinkhof, K. R., & van der Molen, W. (2004). Age-related changes in the efficiency of cognitive processing across the life span. Acta Psychologica, 117, 155–183.

    PubMed  Google Scholar 

  • Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests. New York: Oxford University Press.

    Google Scholar 

  • Springer, M., McIntosh, A., Winocur, G., & Grady, C. (2005). The relation between brain activity during memory tasks and years of education in young and older adults. Neuropsychology, 19, 181–192.

    PubMed  Google Scholar 

  • Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary. New York: Oxford University Press.

    Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reaction. Journal of Experimental Psychology, 18, 643–662.

    Google Scholar 

  • Stuss, D. T. (2000). New approaches to prefrontal lobe testing. In B. Miller, & I. Cummings (Eds.) The human frontal lobes: Functions and disorders. London: Giuldford.

    Google Scholar 

  • Stuss, D. T., & Alexander, M. (2000). Executive functions and the frontal lobes: A conceptual view. Psychological Research, 63, 289–298.

    PubMed  CAS  Google Scholar 

  • Stuss, D. T., Alexander, M. P., Floden, D., Binns, M. A., Levine, B., & McIntosh, A. R., et al. (2002). Fractionation and localization of distinct frontal lobe processes: Evidence from focal lesions in humans. In D. T. Stuss, & R. T. Knight (Eds.) Principles of frontal lobe function (pp. 392–407). New York, NY: Oxford University Press.

    Google Scholar 

  • Stuss, D. T., & Benson, D. F. (1986). The frontal lobes. New York: Raven.

    Google Scholar 

  • Van der Elst, W., van Boxtel, M., van Breukelen, G., & Jolles, J. (2006). The Stroop color–word test: Influence of age, sex and education; normative data for a large sample across the adult age range. Assessment, 13, 62–79.

    PubMed  Google Scholar 

  • Wagner, G., Kock, K., Reichenbach, J., Sauer, H., & Schlosser, R. (2006). The special involvement of the rostrolateral prefrontal cortex in planning abilities: An event-related fMRI study with the Tower of London paradigm. Neuropsychologia, 44, 2337–2347.

    PubMed  Google Scholar 

  • Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta analysis. Behavioral Neuroscience, 3, 241–253.

    Google Scholar 

  • Wecker, N. S., Kramer, J. H., Hallam, B. J., & Delis, D. C. (2005). Mental flexibility: Age effects on switching. Neuropsychology, 19, 345–352.

    PubMed  Google Scholar 

  • Welsh, M. C., Pennington, B. F., & Groissier, D. B. (1991). A normative-developmental study of executive functions: A window on prefrontal function in children. Developmental Neuropsychology, 7, 131–149.

    Article  Google Scholar 

  • Welsh, M. C., Pennington, B. F., Ozonoff, S., Rouse, B., & McCAbe, E. R. (1990). Neuropsychology of early-treated phenylketonuria: Specific executive function deficits. Child Development, 61, 1697–1713.

    PubMed  CAS  Google Scholar 

  • West, R. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272–292.

    PubMed  CAS  Google Scholar 

  • Williams, B., Ponesse, J., Schacher, R., Logan, G., & Tannock, R. (1999). Development of inhibitory control across the life span. Developmental Psychology, 35, 205–213.

    PubMed  CAS  Google Scholar 

  • Wood, R., & Liossi, C. (2006). The ecological validity of executive tests in a severely brain injured sample. Archives of Clinical Neuropsychology, 21, 429–437.

    PubMed  Google Scholar 

  • Yoon, D., Gause, C., Leckman, F., & Singer, H. (2007). Frontal dopaminergic abnormality in Tourette syndrome: A postmortem analysis. Journal of Neurological Sciences, 255, 50–56.

    CAS  Google Scholar 

  • Zelazo, P. D., Carter, A., Reznick, J., & Frye, D. (1997). Early development of executive functions: A problem-solving framework. Review of General Psychology, 1, 198–226.

    Google Scholar 

  • Zelazo, P. D., Craik, F., & Booth, L. (2004). Executive function across the lifespan. Acta Psychologica, 115, 167–183.

    PubMed  Google Scholar 

  • Zelazo, P. D., & Frye, D. (1998). II. Cognitive complexity and control: The development of executive function. Current directions in Psychological Science, 7, 121–126.

    Google Scholar 

  • Zelazo, P. D., & Muller, U. (2002). Executive function in typical and atypical development. In U. Goswami (Ed.) Blackwell handbook of childhood cognitive development (pp. 445–469). Malden, MA: Blackwell.

    Google Scholar 

  • Zook, N., Welsh, M., & Ewing, V. (2006). Performance of healthy, older adults on the Tower of London Revised: Associations with verbal and nonverbal abilities. Aging, Neuropsychology, and Cognition, 13, 1–19.

    Google Scholar 

Download references

Acknowledgement

We want to thank Dr. Alfredo Ardila for his valuable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Rosselli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurado, M.B., Rosselli, M. The Elusive Nature of Executive Functions: A Review of our Current Understanding. Neuropsychol Rev 17, 213–233 (2007). https://doi.org/10.1007/s11065-007-9040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11065-007-9040-z

Keywords

Navigation