Skip to main content

Advertisement

Log in

Differential Expression of Proteins in Brain Regions of Alzheimer’s Disease Patients

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), a progressive neurodegenerative disorder and the most common form of dementia and cognitive impairment is usually characterized by neuritic amyloid plaques, cerebrovascular amyloidosis and neurofibrillary tangles. In order to find out the pathological protein expression, a quantitative proteome analysis of AD hippocampus, substantia nigra and cortex was performed and the extent of protein expression variation not only in contrast to age-matched controls but also among the understudied regions was analyzed. Expression alterations of 48 proteins were observed in each region along with significant co/contra regulation of malate dehydrogenase, lactate dehydrogenase B chain, aconitate hydratase, protein NipSnap homolog 2, actin cytoplasmic 1, creatine kinase U-type and glyceraldehyde-3-phosphate dehydrogenase. These differentially expressed proteins are mainly involved in energy metabolism, cytoskeleton integration, apoptosis and several other potent cellular/molecular processes. Interaction association network analysis further confirms the close interacting relationship between the co/contra regulated differentially expressed proteins among all the three regions. Elucidation of co/contra regulation of differentially expressed proteins will be helpful to understand disease progression and functional alterations associated with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2DE:

Two dimensional gel electrophoresis

AD:

Alzheimer’s disease

ESI-QTOF-MS/MS:

Electrospray ionization quadrupole time of flight tandem MS

References

  1. Aitken A, Collinge DB, van Heusden BP, Isobe T, Roseboom PH, Rosenfeld G, Soll J (1992) 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci 17:498–501

    Article  CAS  PubMed  Google Scholar 

  2. Asif AR, Oellerich M, Amstrong VW, Gross U, Reichard U (2010) Analysis of the cellular Aspergillus fumigatus proteome that reacts with sera from rabbits developing an acquired immunity after experimental aspergillosis. Electrophoresis 31:1947–1958

    Article  CAS  PubMed  Google Scholar 

  3. Bekris LM, Yu CE, Bird TD, Tsuang DW (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23:213–227

    Article  PubMed Central  PubMed  Google Scholar 

  4. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Article  CAS  Google Scholar 

  5. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  6. Bürklen TS, Schlattner U, Homayouni R, Gough K, Rak M, Szeghalmi A, Wallimann T (2006) The creatine kinase/creatine connection to Alzheimer’s disease: CK-inactivation, APP-CK complexes and focal creatine deposits. J Biomed Biotechnol 2006:35936

  7. Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA (2003) Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem 85:1394–1401

    Article  CAS  PubMed  Google Scholar 

  8. Chuang DM, Hough C, Senatorov VV (2005) Glyceraldehyde-3-phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 45:269–290

    Article  CAS  PubMed  Google Scholar 

  9. Cumming RC, Schubert D (2005) Amyloid-beta induces disulfide bonding and aggregation of GAPDH in Alzheimer’s disease. FASEB J 19:2060–2062

    CAS  PubMed  Google Scholar 

  10. Davies CA, Mann DM, Sumpter PQ, Yates PO (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78:151–164

    Article  CAS  PubMed  Google Scholar 

  11. Ferreira IL, Resende R, Ferreiro E, Ergo AC, Pereira CF (2010) Multiple defects in energy metabolism in Alzheimer’s disease. Curr Drug Targets 11:1193–1206

    Article  CAS  PubMed  Google Scholar 

  12. Gandy S (2005) The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease. J Clin Invest 115:1121–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Gohla A, Bokoch GM (2002) 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 12:1704–1710

    Article  CAS  PubMed  Google Scholar 

  14. Halpain S, Hipolito A, Saffer L (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J Neurosci 18:9835–9844

    CAS  PubMed  Google Scholar 

  15. Holtzman DM, Morris JC, Goate AM (2011) Alzheimer’s disease: the challenge of the second century. Sci Transl Med 3:77sr1

    Google Scholar 

  16. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37: (Database issue) D412–D416

  17. Mazzola JL, Sirover MA (2001) Reduction of glyceraldehyde-3-phosphate dehydrogenase activity in Alzheimer’s disease and in Huntington’s disease fibroblasts. J Neurochem 76:442–449

    Article  CAS  PubMed  Google Scholar 

  18. Naletova I, Schmalhausen E, Kharitonov A, Katrukha A, Saso L, Caprioli A, Muronetz V (2008) Non-native glyceraldehyde-3-phosphate dehydrogenase can be an intrinsic component of amyloid structures. Biochim Biophys Acta 1784:2052–2058

    Article  CAS  PubMed  Google Scholar 

  19. Obulesu M, Venu R, Somashekhar R (2011) Tau mediated neurodegeneration: an insight into Alzheimer’s disease pathology. Neurochem Res 36:1329–1335

    Article  CAS  PubMed  Google Scholar 

  20. Planel E, Miyasaka T, Launey T, Chui DH, Tanemura K, Sato S, Murayama O, Ishiguro K, Tatebayashi Y, Takashima A (2004) Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer’s disease. J Neurosci 24:2401–2411

    Article  CAS  PubMed  Google Scholar 

  21. Reilly JF, Games D, Rydel RE, Freedman S, Schenk D, Young WG, Morrison JH, Bloom FE (2003) Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc Natl Acad Sci USA 100:4837–4842

    Article  CAS  PubMed  Google Scholar 

  22. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7:137–152

    Article  PubMed Central  PubMed  Google Scholar 

  23. Rhein V, Baysang G, Rao S, Meier F, Bonert A, Müller-Spahn F, Eckert A (2009) Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol Neurobiol 29:1063–1071

    Article  CAS  PubMed  Google Scholar 

  24. Rinne JO, Rummukainen J, Paljärvi L, Säkö E, Mölsä P, Rinne UK (1989) Neuronal loss in the substantia nigra in patients with Alzheimer’s disease and Parkinson’s disease in relation to extrapyramidal symptoms and dementia. Prog Clin Biol Res 317:325–332

    CAS  PubMed  Google Scholar 

  25. Roth D, Birkenfeld J (1999) Betz H dominant-negative alleles of 14-3-3 proteins cause defects in actin organization and vesicle targeting in the yeast Saccharomyces cerevisiae. FEBS Lett 460:411–416

    Article  CAS  PubMed  Google Scholar 

  26. Sultana R, Boyd-Kimball D, Cai J, Pierce WM, Klein JB, Merchant M, Butterfield DA (2007) Proteomics analysis of the Alzheimer’s disease hippocampal proteome. J Alzheimers Dis 11:153–164

    CAS  PubMed  Google Scholar 

  27. Umahara T, Uchihara T, Tsuchiya K, Nakamura A, Iwamoto T, Ikeda K, Takasaki M (2004) 14-3-3 proteins and zeta isoform containing neurofibrillary tangles in patients with Alzheimer’s disease. Acta Neuropathol 108:279–286

    Article  CAS  PubMed  Google Scholar 

  28. Werner CJ, Heyny-von Haussen R, Mall G, Wolf S (2008) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci 6:8

    Article  PubMed Central  PubMed  Google Scholar 

  29. Zahid S, Oellerich M, Asif AR, Ahmed N (2012) Phosphoproteome profiling of substantia nigra and cortex regions of Alzheimer’s disease patients. J Neurochem 121:954–963

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank, MRC Sudden Death Brain Bank, Department of Neuropathology, The University of Edinburgh for providing brain specimens used for this study. The work was supported by research grant to N.A. Grant No. 20-560/R&D/07 and research grant to S.Z. under the International Research Support Initiative Program (IRSIP) from Higher Education Commission, Pakistan.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdul R. Asif or Nikhat Ahmed.

Additional information

Abdul R. Asif and Nikhat Ahmed have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahid, S., Oellerich, M., Asif, A.R. et al. Differential Expression of Proteins in Brain Regions of Alzheimer’s Disease Patients. Neurochem Res 39, 208–215 (2014). https://doi.org/10.1007/s11064-013-1210-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1210-1

Keywords

Navigation