Skip to main content
Log in

Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

We introduce a novel algorithm (JEA) to simulate exactly from a class of one-dimensional jump-diffusion processes with state-dependent intensity. The simulation of the continuous component builds on the recent Exact Algorithm (Beskos et al., Bernoulli 12(6):1077–1098, 2006a). The simulation of the jump component instead employs a thinning algorithm with stochastic acceptance probabilities in the spirit of Glasserman and Merener (Proc R Soc Lond Ser A Math Phys Eng Sci 460(2041):111–127, 2004). In turn JEA allows unbiased Monte Carlo simulation of a wide class of functionals of the process’ trajectory, including discrete averages, max/min, crossing events, hitting times. Our numerical experiments show that the method outperforms Monte Carlo methods based on the Euler discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beskos A, Roberts GO (2005) Exact simulation of diffusions. Ann Appl Probab 15(4):2422–2444

    Article  MATH  MathSciNet  Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts GO (2006a) Retrospective exact simulation of diffusion sample paths with applications. Bernoulli 12(6):1077–1098

    Article  MATH  MathSciNet  Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts GO, Fearnhead P (2006b) Exact and efficient likelihood based inference for discretely observed diffusions (with discussion). J R Stat Soc Ser B Stat Methodol 68(3):333–382

    Article  MATH  MathSciNet  Google Scholar 

  • Beskos A, Papaspiliopoulos O, Roberts GO (2008) A new factorisation of diffusion measure and sample path reconstruction. Methodology and Computing in Applied Probability 10(1):85–104

    Article  MATH  MathSciNet  Google Scholar 

  • Caines PE, Zhang JF (1995) On adaptive control for jump parameter systems via nonlinear filtering. SIAM J Control Optim 33:1758–1777

    Article  MATH  MathSciNet  Google Scholar 

  • Cariboni J, Schoutens W (2004) Pricing credit default swaps under lévy models. www.defaultrisk.com

  • Casella B (2006) Exact monte carlo simulation of diffusion and jump-diffusion processes with financial applications. PhD thesis, Università Commerciale L. Bocconi, Istituto Metodi Quantitativi

  • Casella B, Roberts GO (2007) Exact monte carlo simulation of killed diffusions. Adv Appl Probab 41:273–291

    Google Scholar 

  • Das S (2002) The surprise element: jumps in interest rates. J Econom 106:27–65

    Article  MATH  Google Scholar 

  • Devroye L (1986) Nonuniform random variate generation. Springer, New York

    Google Scholar 

  • Doob JL (1949) Heuristic approach to the Kolmogorov-Smirnov theorems. Ann Math Stat 20:393–403

    Article  MATH  MathSciNet  Google Scholar 

  • Giesecke K (2004) Credit risk modeling and evaluation: an introduction. In: Credit risk: models and management. Risk books, vol 2. D. Shimko

  • Giraudo M, Sacerdote L (1997) Jump-diffusion processes as models for neuronal activity. Biosystems 40:75–82

    Article  Google Scholar 

  • Glasserman P, Merener N (2004) Convergence of a discretization scheme for jump-diffusion processes with state-dependent intensities. Proc R Soc Lond Ser A Math Phys Eng Sci 460(2041):111–127. Stochastic analysis with applications to mathematical finance

    Article  MATH  MathSciNet  Google Scholar 

  • Gobet E (2000) Weak approximation of killed diffusion using Euler schemes. Stoch Process Appl 87(2):167–197

    Article  MATH  MathSciNet  Google Scholar 

  • Ikeda N, Watanabe S (1989) Stochastic differential equations and diffusion processes. North-Holland mathematical library, vol 24, 2nd edn. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Johannes M (2004) The statistical and economic role of jumps in continuous-time interest rate models. J Finance 59(1):227–260

    Article  Google Scholar 

  • Johannes M, Kumar R, Polson N (1999) State dependent jump models: how do us equity indices jump? Working paper. University of Chicago

  • Karatzas I, Shreve SE (1991) Brownian motion and stochastic calculus. In: Graduate texts in mathematics, vol 113. 2nd edn. Springer, New York

    Google Scholar 

  • Merton RC (1976) Option pricing when undrlying stock returns are discontinuous. J Financ Econ 3:125–144

    Article  MATH  Google Scholar 

  • Metwally S, Atiya A (2002) Using brownian bridge for fast simulation of jump-diffusion processes and barrier options. J Deriv 10:43–54

    Article  Google Scholar 

  • Pelucchetti S (2008) An analysis of the efficiency of the exact algorithm. PhD thesis, Università Commerciale L. Bocconi, Istituto Metodi Quantitativi

  • Platen E, Rebolledo R (1985) Weak convergence of semimartingales and discretisation methods. Stoch Process Appl 20(1):41–58

    Article  MATH  MathSciNet  Google Scholar 

  • Revuz D, Yor M (1991) Continuous Martingales and Brownian motion. Springer, New York

    MATH  Google Scholar 

  • Zhou G (2001) The term structure of credit spreads with jump risk. J Bank Financ 25:504–531

    Article  Google Scholar 

  • Zhu SC (1999) Stochastic jump-diffusion process for computing medial axes in markov random fields. IEEE Trans Pattern Anal Mach Intell 21:1158–1169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth O. Roberts.

Additional information

Research supported by EPSRC.

Both authors are indebted to Alex Beskos, Omiros Papaspiliopoulos and Stefano Peluchetti for many stimulating discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casella, B., Roberts, G.O. Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications. Methodol Comput Appl Probab 13, 449–473 (2011). https://doi.org/10.1007/s11009-009-9163-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-009-9163-1

Keywords

AMS 2000 Subject Classifications

Navigation