Skip to main content

Advertisement

Log in

Effect of Colchicine on Platelet-Platelet and Platelet-Leukocyte Interactions: a Pilot Study in Healthy Subjects

  • Published:
Inflammation Aims and scope Submit manuscript

An Erratum to this article was published on 06 October 2015

Abstract

The cardioprotective mechanisms of colchicine in patients with stable ischemic heart disease remain uncertain. We tested varying concentrations of colchicine on platelet activity in vitro and a clinically relevant 1.8-mg oral loading dose administered over 1 h in 10 healthy subjects. Data are shown as median [interquartile range]. Colchicine addition in vitro decreased light transmission platelet aggregation only at supratherapeutic concentrations but decreased monocyte- (MPA) and neutrophil-platelet aggregation (NPA) at therapeutic concentrations. Administration of 1.8 mg colchicine to healthy subjects had no significant effect on light transmission platelet aggregation but decreased the extent of MPA (28 % [22–57] to 22 % [19–31], p = 0.05) and NPA (19 % [16–59] to 15 % [11–30], p = 0.01), platelet surface expression of PAC-1 (370 mean fluorescence intensity (MFI) [328–555] to 333 MFI [232–407], p = 0.02) and P-selectin (351 MFI [269–492] to 279 [226–364], p = 0.03), and platelet adhesion to collagen (10.2 % [2.5–32.6] to 2.0 % [0.2–9.5], p = 0.09) 2 h post-administration. Thus, in clinically relevant concentrations, colchicine decreases expression of surface markers of platelet activity and inhibits leukocyte-platelet aggregation but does not inhibit homotypic platelet aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Slobodnick A, Shah B, Pillinger MH, Krasnokutsky S. 2014. Colchicine: old and new. Am J Med.

  2. Crittenden, D.B., R.A. Lehmann, L. Schneck, R.T. Keenan, B. Shah, J.D. Greenberg, B.N. Cronstein, S.P. Sedlis, and M.H. Pillinger. 2012. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. Journal of Rheumatology 39: 1458–1464.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Nidorf, S.M., J.W. Eikelboom, C.A. Budgeon, and P.L. Thompson. 2013. Low-dose colchicine for secondary prevention of cardiovascular disease. Journal of the American College of Cardiology 61: 404–410.

    Article  CAS  PubMed  Google Scholar 

  4. Menche, D., A. Israel, and S. Karpatkin. 1980. Platelets and microtubules. Effect of colchicine and D2O on platelet aggregation and release induced by calcium ionophore A23187. Journal of Clinical Investigation 66: 284–291.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Behnke, O. 1965. Further studies on microtubules. A marginal bundle in human and rat thrombocytes. Journal of Ultrastructure Research 13: 469–477.

    Article  CAS  PubMed  Google Scholar 

  6. White, J.G. 1968. Fine structural alterations induced in platelets by adenosine diphosphate. Blood 31: 604–622.

    CAS  PubMed  Google Scholar 

  7. White, J.G. 1968. Effects of colchicine and Vinca alkaloids on human platelets. I. Influence on platelet microtubules and contractile function. American Journal of Pathology 53: 281–291.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. White, J.G. 1969. Effects of colchicine and vinca alkaloids on human platelets. 3. Influence on primary internal contraction and secondary aggregation. American Journal of Pathology 54: 467–478.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Terkeltaub, R.A., D.E. Furst, K. Bennett, K.A. Kook, R.S. Crockett, and M.W. Davis. 2010. High versus low dosing of oral colchicine for early acute gout flare. Arthritis and Rheumatism 62: 1060–1068.

    Article  CAS  PubMed  Google Scholar 

  10. Merolla, M., M.A. Nardi, and J.S. Berger. 2012. Centrifugation speed affects light transmission aggregometry. International Journal of Laboratory Hematology 34: 81–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Furman, M.I., S.E. Benoit, M.R. Barnard, C.R. Valeri, M.L. Borbone, R.C. Becker, H.B. Hechtman, and A.D. Michelson. 1998. Increased platelet reactivity and circulating monocyte‐platelet aggregates in patients with stable coronary artery disease. Journal of the American College of Cardiology 31: 352–358.

    Article  CAS  PubMed  Google Scholar 

  12. Shah, B., S.P. Sedlis, X. Mai, N.S. Amoroso, Y. Guo, J.D. Lorin, and J.S. Berger. 2013. Comparison of platelet activity measurements using arterial and venous blood sampling. Journal of Thrombosis and Haemostasis 11: 1922–1924.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Shah, B., V. Valdes, M.A. Nardi, L. Hu, E. Schrem, and J.S. Berger. 2014. Mean platelet volume reproducibility and association with platelet activity and anti-platelet therapy. Platelets 25: 188–192.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bouaziz, A., N.B. Amor, G.E. Woodard, H. Zibidi, J.J. Lopez, A. Bartegi, G.M. Salido, and J.A. Rosado. 2007. Tyrosine phosphorylation/dephosphorylation balance is involved in thrombin-evoked microtubular reorganization in human platelets. Thrombosis and Haemostasis 98: 375–384.

    CAS  PubMed  Google Scholar 

  15. Wittels, E., A. Israel, and S. Karpatkin. 1981. Evidence for colchicine-dependent protease activity in human platelets. Thrombosis Research 24: 215–221.

    Article  CAS  PubMed  Google Scholar 

  16. Raju, N.C., Q. Yi, M. Nidorf, N.D. Fagel, R. Hiralal, and J.W. Eikelboom. 2012. Effect of colchicine compared with placebo on high sensitivity C-reactive protein in patients with acute coronary syndrome or acute stroke: a pilot randomized controlled trial. Journal of Thrombosis and Thrombolysis 33: 88–94.

    Article  CAS  PubMed  Google Scholar 

  17. Abanonu, G.B., A. Daskin, M.F. Akdogan, S. Uyar, and R. Demirunc. 2012. Mean platelet volume and B-thromboglobulin levels in familial Mediterranean fever: effect of colchicine use? European Journal of Internal Medicine 23: 661–664.

    Article  CAS  PubMed  Google Scholar 

  18. Cronstein, B.N., Y. Molad, J. Reibman, E. Balakhane, R.I. Levin, and G. Weissmann. 1995. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. Journal of Clinical Investigation 96: 994–1002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Roberge, C.J., M. Gaudry, R. de Médicis, A. Lussier, P.E. Poubelle, and P.H. Naccache. 1993. Crystal-induced neutrophil activation. IV. Specific inhibition of tyrosine phosphorylation by colchicine. Journal of Clinical Investigation 92: 1722–1729.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Martinon, F., V. Pétrilli, A. Mayor, A. Tardivel, and J. Tschopp. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440: 237–241.

    Article  CAS  PubMed  Google Scholar 

  21. Furman, M.I., M.R. Barnard, L.A. Krueger, M.L. Fox, E.A. Shilale, D.M. Lessard, P. Marchese, A.L. Frelinger 3rd, R.J. Goldberg, and A.D. Michelson. 2001. Circulating monocyte‐platelet aggregates are an early marker of acute myocardial infarction. Journal of the American College of Cardiology 38: 1002–1006.

    Article  CAS  PubMed  Google Scholar 

  22. Mickelson, J.K., N.M. Lakkis, G. Villarreal‐Levy, B.J. Hughes, and C.W. Smith. 1996. Leukocyte activation with platelet adhesion after coronary angioplasty: a mechanism for recurrent disease? Journal of the American College of Cardiology 28: 345–353.

    Article  CAS  PubMed  Google Scholar 

  23. Hayward, R., B. Campbell, Y.K. Shin, R. Scalia, and A.M. Lefer. 1999. Recombinant soluble p‐selectin glycoprotein ligand‐1 protects against myocardial ischemic reperfusion injury in cats. Cardiovascular Research 41: 65–76.

    Article  CAS  PubMed  Google Scholar 

  24. Cercedo, D., R. Stock, S. Gonzalez, E. Reyes, and R. Mondragon. 2002. Modification of actin, myosin and tubulin distribution during cytoplasmic granule movements associated with platelet adhesion. Haematologica 87: 1165–1176.

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by the NYU CTSA grant UL1TR000038 from the National Center for Advancing Translational Sciences (NIH). Dr. Shah was partially funded by the American Heart Association Clinical Research Program (13CRP14520000) and the New York State Department of Health Empire Clinical Research Investigator Program. Dr. Berger was partially funded by the National Heart and Lung Blood Institute of the National Institutes of Health (RO1 HL114978), American Heart Association Clinical Research Program (13CRP14410042) and Doris Duke Charitable Foundation (2010055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binita Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, B., Allen, N., Harchandani, B. et al. Effect of Colchicine on Platelet-Platelet and Platelet-Leukocyte Interactions: a Pilot Study in Healthy Subjects. Inflammation 39, 182–189 (2016). https://doi.org/10.1007/s10753-015-0237-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0237-7

KEY WORDS

Navigation