Skip to main content

Advertisement

Log in

Vagus nerve stimulation in experimental heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Chronic heart failure (HF) is associated with autonomic dysregulation characterized by a sustained increase in sympathetic drive and by withdrawal of parasympathetic activity. Sympathetic overdrive and increased heart rate are predictors of poor long-term outcome in patients with HF. Considerable evidence exists that supports the use of pharmacologic agents that partially inhibit sympathetic activity as effective long-term therapy for patients with HF; the classic example is the wide use of selective and non-selective beta-adrenergic receptor blockers. In contrast, modulation of parasympathetic activation as potential therapy for HF has received only limited attention over the years given its complex cardiovascular effects. In this article, we review the results of recent experimental animal studies that provide support for the possible use of electrical Vagus nerve stimulation (VNS) as a long-term therapy for the treatment of chronic HF. In addition to exploring the effects of chronic VNS on left ventricular (LV) function, the review will also address the effects of VNS on potential modifiers of the HF state that include cytokine production and nitric oxide elaboration. Finally, we will briefly review other nerve stimulation approaches which is also currently under investigation as potential therapeutic modalities for treating chronic HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwatrz PJ, Vanoli E, Stramba-Badiale M, De Ferrari GM, Billman GE, Foreman RD (1988) Autonomic mechanisms and sudden death. New insights from the analysis of baroreceptor reflexes in conscious dogs with and without myocardial infarction. Circulation 78:969–973

    Google Scholar 

  2. Mortara A, La Rovere MT, Pinna GD, Prpa A, Maestri R, Febo O, Pozzoli M, Opasich C, Tavazzi L (1997) Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation 96:3450–3458

    CAS  PubMed  Google Scholar 

  3. La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartz PJ (1998) Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 351:478–484

    Article  CAS  PubMed  Google Scholar 

  4. Lechat P, Hulot JS, Escolano S, Mallet A, Leizorovicz A, Werhlen-Grandjean M, Pochmalicki G, Dargie H, on behalf of the CIBIS II Investigators (2001) Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II trial. Circulation 103:1428–1433

    CAS  PubMed  Google Scholar 

  5. Sabbah HN, Shimoyama H, Kono T, Gupta RS, Sharov VG, Scicli G, Levine TB, Goldstein S (1994) Effects of long-term monotherapy with enalapril, metoprolol and digoxin on the progression of left ventricular dysfunction and dilation in dogs with reduced ejection fraction. Circulation 89:2852–2859

    CAS  PubMed  Google Scholar 

  6. Sabbah HN, Stanley WC, Sharov VG, Mishima T, Tanimura M, Benedict CR, Hegde S, Goldstein S (2000) Effects of dopamine β-hydroxylase inhibition with nepicastat on the progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure. Circulation 102:1990–1995

    CAS  PubMed  Google Scholar 

  7. Morita H, Suzuki G, Chaudhry PA, Anagnostopoulos PV, Tanhehco EJ, Sharov VG, Goldstein S, Sabbah HN (2002) Effects of long-term monotherapy with metoprolol CR/XL on the progression of left ventricular dysfunction and remodeling in dogs with chronic heart failure. Cardiovasc Drugs Ther 16:433–449

    Article  Google Scholar 

  8. Sabbah HN, Wang M, Jiang A, Ilsar I, Gupta RC, Rastogi S (2009) Long-term monotherapy with ivabradine improves left ventricular function and prevents progressive chamber remodeling in dogs with moderate heart failure (abstract). Circulation 120:S867

    Article  Google Scholar 

  9. Kunze DL (1972) Reflex discharge patterns of cardiac vagal efferent fibers. J Physiol (Lond) 222:1–8

    CAS  Google Scholar 

  10. Harman MA, Reeves TJ (1968) Effects of efferent nerve stimulation on atrial and ventricular function. Am J Physiol 215:1210–1217

    CAS  PubMed  Google Scholar 

  11. Wiggers CJ (1916) Physiology of the mammalian auricles: II. Influence of the vagus nerves on the fractionate contraction of the right auricle. Am J Physiol 133–140

  12. DeGeest H, Levy M, Zieske H, Lipman RI (1965) Depression on ventricular contractility by stimulation of the vagus nerves. Circ Res 17:222–235

    CAS  PubMed  Google Scholar 

  13. Henry JP, Meehan JP (1971) Circulation: integrative physiology study. Year Book Medical Publishers, Chicago, p 57

    Google Scholar 

  14. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ (1991) Vagal stimulation and prevention of sudden death in conscious dogs with healed myocardial infarction. Circ Res 68:1471–1481

    CAS  PubMed  Google Scholar 

  15. Li M, Zheng C, Sato T, Kawada T, Sugimachi N, Sunagawa K (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109:120–124

    Article  PubMed  Google Scholar 

  16. Zheng C, Li M, Inagaki M, Kawada T, Sunagawa K, Sugimachi M (2005) Vagal stimulation markedly suppresses arrhythmias in conscious rats with chronic heart failure after myocardial infarction. Conf Proc IEEE Eng Med Biol Soc 7:7072–7075

    PubMed  Google Scholar 

  17. Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB, Jafri S, Hawkins ET, Goldstein S (1991) A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol 260:H1379–H1384

    CAS  PubMed  Google Scholar 

  18. Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, Mazgalev TN (2009) Chronic Vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circulation 2:692–699

    CAS  PubMed  Google Scholar 

  19. Jones JFX, Wang Y, Jordan D (1998) Activity of C fibre cardiac vagal efferents in anaesthetized cats and rats. J Physiol 507:869–880

    Article  CAS  PubMed  Google Scholar 

  20. Tosato M, Yoshida K, Toft E, Nekrasas V, Struijk (2006) Closed-loop control of the heart rate by electrical stimulation of the vagus nerve. Med Biol Eng Comput 44:161–169

    Article  PubMed  Google Scholar 

  21. Ben-Menachem E, Mañon-Espaillat R, Ristanovic R, Wilder BJ, Stefan H, Mirza W, Tarver WB, Wernicke JF (1994) Vagus nerve stimulation or treatment of partial seizures: 1. A controlled study of effect on seizures. First International Vagus Nerve Stimulation Study Group. Epilepsia 35:616–626

    Article  CAS  PubMed  Google Scholar 

  22. DeGiorgio C, Heck C, Bunch S, Britton J, Green P, Lancman M, Murphy J, Olejniczak P, Shih J, Arrambide S, Soss J (2005) Vagus nerve stimulation for epilepsy: randomized comparison of three stimulation paradigms. Neurology 65:317–319

    Article  CAS  PubMed  Google Scholar 

  23. De Herdt V, Boon P, Ceulemans B, Hauman H, Lagae L, Legros B, Sadzot B, Van Bogaert P, van Rijckevorsel K, Verhelst H, Vonck K (2007) Vagus nerve stimulation for refractory epilepsy: a Belgian multicenter study. Eur J Paediatr Neurol 11:261–269

    Article  PubMed  Google Scholar 

  24. Labiner DM, Ahern GL (2007) Vagus nerve stimulation therapy in depression and epilepsy: therapeutic parameter settings. Acta Neurol Scand 115:23–33

    Article  PubMed  Google Scholar 

  25. Sabbah HN, Rastogi S, Mishra S, Gupta RC, Ilsar I, Imai M, Cohen U, Ben-David T, Ben-Ezra O (2005) Long-term therapy with neuroselective electric Vagus nerve stimulation improves LV function and attenuates global LV remodelling in dogs with chronic heart failure (abstract). Eur J Heart Fail Suppl 4:166

    Google Scholar 

  26. Sabbah HN, Imai M, Zaretsky A, Rastogi S, Wang M, Jiang A, Zaca V (2007) Therapy with Vagus nerve electrical stimulation combined with beta-blockade improves left ventricular function in dogs with heart failure beyond that seen with beta-blockade alone (abstract). Eur J Heart Fail 6:114

    Google Scholar 

  27. Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA (1997) Effects of angiotensin-converting enzyme inhibitors and angiotensin ii type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99:1926–1935

    Article  CAS  PubMed  Google Scholar 

  28. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Czura CJ, Tracey KJ (2003) Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421:384–388

    Article  CAS  PubMed  Google Scholar 

  30. Gupta RC, Imai M, Jiang AJ, Wang M, Sabbah HN (2006) Chronic therapy with selective electric Vagus nerve stimulation normalizes plasma concentration of tissue necrosis factor-α, interleukin-6 and B-type natriuretic peptide in dogs with heart failure (abstract). J Am Coll Cardiol 47:77A

    Article  Google Scholar 

  31. Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T, Yee S-P (2002) Development of Heart Failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 106:873–879

    Article  CAS  PubMed  Google Scholar 

  32. Kelly RA, Balligand JL, Smith TW (1996) Nitric oxide and cardiac function. Circ Res 79:363–380

    CAS  PubMed  Google Scholar 

  33. Paulus WJ, Shah AM (1999) NO and cardiac diastolic function. Cardiovasc Res 43:595–606

    Article  CAS  PubMed  Google Scholar 

  34. Gupta RC, Mishra S, Rastogi S, Imai M, Zaca V, Sabbah HN (2006) Chronic therapy with electric Vagus nerve stimulation normalizes mRNA and protein expression of nitric oxide synthase in myocardium of dogs with heart failure (abstract). Eur Heart J 27:477

    Article  Google Scholar 

  35. Pattern RD, DeNofrio D, El-Zaru M, Kakkar R, Saunders J, Celestin F, Warner K, Rastegar H, Khabbaz KR, Udelson JE, Konstam MA, Karas RH (2005) Ventricular assist device therapy normalizes inducible nitric oxide synthase expression and reduces cardiomyocyte apoptosis in the failing human heart. J Am Coll Cardiol 45:1419–1424

    Article  Google Scholar 

  36. Mungrue IN, Gros R, You X, Pirani A, Azad A, Csont T, Schulz R, Butany J, Stewart DJ, Husain M (2002) Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block and sudden death. J Clin Invest 109:735–743

    CAS  PubMed  Google Scholar 

  37. Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96:657–662

    Article  CAS  PubMed  Google Scholar 

  38. Barouch LA, Harrison RW, Skaf MW, Rosas GO, Cappola TP, Kobeissi ZA, Hobai IA, Lemmon CA, Burnett AL, O’Rourke B, Rodriguez ER, Huang PL, Lima JA, Berkowitz DE, Hare JM (2002) Nitric oxide regulates the heart by special confinement of nitric oxide synthase isoforms. Nature 416:337–339

    CAS  PubMed  Google Scholar 

  39. Damy T, Ratajczak P, Shah AM, Camors E, Marty I, Hasenfuss G, Marotte F, Samuel JL, Heymes C (2004) Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 363:1365–1367

    Article  CAS  PubMed  Google Scholar 

  40. Bendall JK, Damy T, Ratajczak P, Loyer X, Monceau V, Marty I, Milliez P, Robidel E, Marotte F, Samuel J-L, Heymes C (2004) Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in β-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 110:2368–2375

    Article  CAS  PubMed  Google Scholar 

  41. Jongsma HJ, Wilders R (2000) Gap junctions in cardiovascular disease. Circ Res 86:1193–1197

    CAS  PubMed  Google Scholar 

  42. Severs NJ, Bruce AF, Dupont E, Rothery S (2008) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res 80:9–19

    Article  CAS  PubMed  Google Scholar 

  43. Van Kempen MJA, Ten Velde I, Wessels A, Oosthoek PW, Gros D, Jongsma HJ, Moorman AFM, Lamers WH (1995) Differential connexins distribution accommodates cardiac function in different species. Microsc Res Tech 31:420–436

    Article  PubMed  Google Scholar 

  44. Wang XJ, Gerdes AM (1999) Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: III. Intercalated disc remodeling. J Mol Cell Cardiol 31:333–343

    Article  CAS  PubMed  Google Scholar 

  45. Ai X, Pogwizd M (2005) Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96:54–63

    Article  CAS  PubMed  Google Scholar 

  46. Rastogi S, Mishra S, Ilsar I, Zaretsky A, Sabbah HN (2007) Chronic therapy with electric Vagus nerve stimulation normalizes mRNA and protein expression of connexin-40, -43 and -45 in left ventricular myocardium of dogs with heart failure (abstract). Circulation 116:II–218

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Drs. Ehud Cohen, Rami Biran, Tamir Ben-David, Shai Ayal and Yitzhak Sinai from BioControl Medical, Ltd. for their assistance on studies in dogs using the CardioFit VNS system. This study is supported, in part, by research grants from BioControl Medical, Ltd. and National Heart, Lung, and Blood Institute PO1 HL074237-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani N. Sabbah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabbah, H.N., Ilsar, I., Zaretsky, A. et al. Vagus nerve stimulation in experimental heart failure. Heart Fail Rev 16, 171–178 (2011). https://doi.org/10.1007/s10741-010-9209-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9209-z

Keywords

Navigation