Skip to main content

Advertisement

Log in

Pediatric population-based neuroimaging and the Generation R Study: the intersection of developmental neuroscience and epidemiology

  • NEW STUDY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Neuroimaging studies of typically developing children and adolescents have provided valuable information on global and regional developmental trajectories of brain development. As these studies become larger and population-based, they are generating an intersection between the fields of developmental neuroscience and epidemiology. However, few of these studies have adequately probed the contribution of multiple environmental and genetic factors on brain development. Studies designed to optimally evaluate the role of multiple environmental and genetic factors on brain development require both large sample sizes and the prospective collection of multiple environmental factors. The Generation R Study is a large, prospective, prenatal-cohort study of nearly 10,000 children that began in 2002 in Rotterdam, the Netherlands. In September of 2009, 6–8 year old children from the Generation R Study were invited to participate in a magnetic resonance imaging component of the study. We provide an overview of the study design and experience for the first 801 children recruited for the neuroimaging component of the study. The protocol includes a 1-h neuropsychological assessment using the NEPSY-II, a mock scanning session, and a neuroimaging session that includes high-resolution structural, diffusion tensor, and resting-state functional MRI sequences. Image quality has been good to excellent in over 80 % of the children to date. The infusion of imaging into the Generation R Study will set the stage for evaluating the role of multiple environmental and genetic factors in both typical and atypical neurodevelopment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. 4th ed. New York: McGraw-Hill Health Professions Division; 2000.

    Google Scholar 

  2. Pomeroy SL, Kim JY. Biology and pathobiology of neuronal development. Ment Retard Dev Disabil Res Rev. 2000;6(1):41–6.

    Article  PubMed  CAS  Google Scholar 

  3. White T, Su S, Schmidt M, Kao CY, Sapiro G. The development of gyrification in childhood and adolescence. Brain Cogn. 2010;72(1):36–45. doi:10.1016/j.bandc.2009.10.009.

    Article  PubMed  Google Scholar 

  4. Huttenlocher PR. Morphometric study of human cerebral cortex development. Neuropsychologia. 1990;28(6):517–27.

    Article  PubMed  CAS  Google Scholar 

  5. Huttenlocher PR, De Courten C, Garey LJ, van der Loos H. Synaptic development in human cerebral cortex. Int J Neurol. 1982;17:144–54.

    Google Scholar 

  6. Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturation of the brain. In: Minkowski A, editor. Regional development of the brain in early life. Oxford: Blackwell; 1967. p. 3–70.

    Google Scholar 

  7. Huttenlocher P. Developmental anatomy of the prefrontal cortex. In: Krasnegor N, editor. Development of the prefrontal cortex: evolution, neurobiology, and behavior. Baltimore: Paul H. Brookes Publishing Co., Inc.; 1997. p. 69–83.

    Google Scholar 

  8. Huttenlocher PR, de Courten C. The development of synapses in striate cortex of man. Hum Neurobiol. 1987;6(1):1–9.

    PubMed  CAS  Google Scholar 

  9. Williams RW, Herrup K. The control of neuron number. Annu Rev Neurosci. 1988;11:423–53. doi:10.1146/annurev.ne.11.030188.002231.

    Article  PubMed  CAS  Google Scholar 

  10. Gressens P, Mesples B, Sahir N, Marret S, Sola A. Environmental factors and disturbances of brain development. Semin Neonatol. 2001;6(2):185–94. doi:10.1053/siny.2001.0048.

    Article  PubMed  CAS  Google Scholar 

  11. Paus T. Population neuroscience: why and how. Hum Brain Mapp. 2010;31(6):891–903. doi:10.1002/hbm.21069.

    Article  PubMed  Google Scholar 

  12. Jaddoe VW, van Duijn CM, van der Heijden AJ, Mackenbach JP, Moll HA, Steegers EA, et al. The Generation R Study: design and cohort update 2010. Eur J Epidemiol. 2010;25(11):823–41. doi:10.1007/s10654-010-9516-7.

    Article  PubMed  Google Scholar 

  13. Hofman A, Jaddoe VW, Mackenbach JP, Moll HA, Snijders RF, Steegers EA, et al. Growth, development and health from early fetal life until young adulthood: the Generation R Study. Paediatr Perinat Epidemiol. 2004;18(1):61–72.

    Article  PubMed  Google Scholar 

  14. Tiemeier H, Velders FP, Szekely E, Roza SJ, Dieleman G, Jaddoe VW et al. The Generation R Study: a review of design, findings to date, and a study of the 5-HTTLPR by environmental interaction from fetal life onward. J Am Acad Child Adolesc Psychiatry. 2012;51(11):1119–35 e7. doi:10.1016/j.jaac.2012.08.021.

    Google Scholar 

  15. Verburg BO, Steegers EA, De Ridder M, Snijders RJ, Smith E, Hofman A, et al. New charts for ultrasound dating of pregnancy and assessment of fetal growth: longitudinal data from a population-based cohort study. Ultrasound Obstet Gynecol. 2008;31(4):388–96. doi:10.1002/uog.5225.

    Article  PubMed  CAS  Google Scholar 

  16. Roza SJ, Govaert PP, Vrooman HA, Lequin MH, Hofman A, Steegers EA, et al. Foetal growth determines cerebral ventricular volume in infants The Generation R Study. Neuroimage. 2008;39(4):1491–8. doi:10.1016/j.neuroimage.2007.11.004.

    Article  PubMed  Google Scholar 

  17. Jaddoe VW, Mackenbach JP, Moll HA, Steegers EA, Tiemeier H, Verhulst FC, et al. The Generation R Study: design and cohort profile. Eur J Epidemiol. 2006;21(6):475–84. doi:10.1007/s10654-006-9022-0.

    Article  PubMed  Google Scholar 

  18. Brooks BL, Sherman EM, Strauss E. Test Review: NEPSY-II: a developmental neuropsychological assessment, second edition. Child Neuropsychol. 2010;16:80–101.

    Article  Google Scholar 

  19. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113.

    Article  PubMed  CAS  Google Scholar 

  20. Durston S, Nederveen H, van Dijk S, van Belle J, de Zeeuw P, Langen M, et al. Magnetic resonance simulation is effective in reducing anxiety related to magnetic resonance scanning in children. J Am Acad Child Adolesc Psychiatry. 2009;48(2):206–7. doi:10.1097/CHI.0b013e3181930673.

    Article  PubMed  Google Scholar 

  21. Fischl B. FreeSurfer. Neuroimage. 2012;. doi:10.1016/j.neuroimage.2012.01.021.

    Google Scholar 

  22. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208–19. doi:10.1016/j.neuroimage.2004.07.051.

    Article  PubMed  Google Scholar 

  23. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505.

    Article  PubMed  Google Scholar 

  24. White T, Schmidt M, Karatekin C. White matter ‘potholes’ in early-onset schizophrenia: a new approach to evaluate white matter microstructure using diffusion tensor imaging. Psychiatry Res. 2009;174(2):110–5. doi:10.1016/j.pscychresns.2009.04.014.

    Article  PubMed  Google Scholar 

  25. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–73.

    Article  PubMed  CAS  Google Scholar 

  26. Kim DI, Manoach DS, Mathalon DH, Turner JA, Mannell M, Brown GG, et al. Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Hum Brain Mapp. 2009;30(11):3795–811. doi:10.1002/hbm.20807.

    Article  PubMed  Google Scholar 

  27. Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imag. 2004;23(2):137–52. doi:10.1109/TMI.2003.822821.

    Article  Google Scholar 

  28. Langeslag SJ, Schmidt M, Ghassabian A, Jaddoe VW, Hofman A, van der Lugt A, et al. Functional connectivity between parietal and frontal brain regions and intelligence in young children: the Generation R study. Hum Brain Mapp. 2012;. doi:10.1002/hbm.22143.

    Google Scholar 

  29. Gemeente-Rotterdam. Bevolking van Rotterdam naar etniciteit (CBS-definitie), op 1-1-2001 t/m 2011 Centrum voor Onderzoek en Statistiek, Rotterdam, the Netherlands. http://www.cos.rotterdam.nl/ (2011). Accessed 23 June 2011.

  30. NINDS. Genes at work in the brain. Bethesda, Maryland: National Institutes of Neurological Disorders and Stroke. U.S. Department of Health and Human Services; 2010.

  31. White T, Andreasen NC, Nopoulos P. Brain volumes and surface morphology in monozygotic twins. Cereb Cortex. 2002;12(5):486–93.

    Article  PubMed  Google Scholar 

  32. Bartley AJ, Jones DW, Weinberger DR. Genetic variability of human brain size and cortical gyral patterns. Brain. 1997;120(Pt 2):257–69.

    Article  PubMed  Google Scholar 

  33. Henrichs J, Schenk JJ, Roza SJ, van den Berg MP, Schmidt HG, Steegers EA, et al. Maternal psychological distress and fetal growth trajectories: the Generation R Study. Psychol Med. 2010;40(4):633–43. doi:10.1017/S0033291709990894.

    Article  PubMed  CAS  Google Scholar 

  34. Roza SJ, Verburg BO, Jaddoe VW, Hofman A, Mackenbach JP, Steegers EA et al. Effects of maternal smoking in pregnancy on prenatal brain development. The Generation R Study. Eur J Neurosci. 2007;25(3):611–7. doi:10.1111/j.1460-9568.2007.05393.x.

    Google Scholar 

  35. El Marroun H, Tiemeier H, Steegers EA, Jaddoe VW, Hofman A, Verhulst FC, et al. Intrauterine cannabis exposure affects fetal growth trajectories: the Generation R Study. J Am Acad Child Adolesc Psychiatry. 2009;48(12):1173–81. doi:10.1097/CHI.0b013e3181bfa8ee.

    Article  PubMed  Google Scholar 

  36. Waber DP, De Moor C, Forbes PW, Almli CR, Botteron KN, Leonard G, et al. The NIH MRI study of normal brain development: performance of a population based sample of healthy children aged 6 to 18 years on a neuropsychological battery. J Int Neuropsychol Soc. 2007;13(5):729–46. doi:10.1017/S1355617707070841.

    Article  PubMed  Google Scholar 

  37. Cartwright-Hatton S, McNicol K, Doubleday E. Anxiety in a neglected population: prevalence of anxiety disorders in pre-adolescent children. Clin Psychol Rev. 2006;26(7):817–33. doi:10.1016/j.cpr.2005.12.002.

    Article  PubMed  Google Scholar 

  38. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW. Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci. 2004;24(38):8223–31.

    Article  PubMed  CAS  Google Scholar 

  39. Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol. 1994;51(9):874–87.

    Article  PubMed  CAS  Google Scholar 

  40. Jernigan TL, Trauner DA, Hesselink JR, Tallal PA. Maturation of human cerebrum observed in vivo during adolescence. Brain. 1991;114(Pt 5):2037–49.

    Article  PubMed  Google Scholar 

  41. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2(10):861–3. doi:10.1038/13158.

    Article  PubMed  CAS  Google Scholar 

  42. Evans AC, The NIH. MRI study of normal brain development. Neuroimage. 2006;30(1):184–202. doi:10.1016/j.neuroimage.2005.09.068.

    Article  PubMed  Google Scholar 

  43. Pausova Z, Paus T, Abrahamowicz M, Almerigi J, Arbour N, Bernard M, et al. Genes, maternal smoking, and the offspring brain and body during adolescence: design of the Saguenay Youth Study. Hum Brain Mapp. 2007;28(6):502–18. doi:10.1002/hbm.20402.

    Article  PubMed  Google Scholar 

  44. Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Buchel C, et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry. 2010;15(12):1128–39. doi:10.1038/mp.2010.4.

    Article  PubMed  CAS  Google Scholar 

  45. Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67(5):728–34. doi:10.1016/j.neuron.2010.08.040.

    Article  PubMed  CAS  Google Scholar 

  46. Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN. Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage. 2010;49(1):63–70. doi:10.1016/j.neuroimage.2009.08.016.

    Article  PubMed  Google Scholar 

  47. Giedd JN, Lenroot RK, Shaw P, Lalonde F, Celano M, White S et al. Trajectories of anatomic brain development as a phenotype. Novartis Found Symp. 2008;289:101–12; discussion 12-8, 93-5.

    Google Scholar 

  48. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101(21):8174–9. doi:10.1073/pnas.0402680101.

    Article  PubMed  CAS  Google Scholar 

  49. Glozman JM. A.R. Luria and the history of Russian neuropsychology. J His Neurosci. 2007;16(1–2):168–80. doi:10.1080/09647040600550368.

    Article  CAS  Google Scholar 

  50. Luciana M, Nelson CA. The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children. Neuropsychologia. 1998;36(3):273–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Generation R Study is conducted by the Erasmus Medical Center in close collaboration with the Erasmus University Rotterdam, the Municipal Health Service in the Rotterdam area, the Rotterdam Homecare Foundation, Rotterdam and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond (STAR-MDC), Rotterdam. We gratefully acknowledge the contribution of children and parents, general practitioners, hospitals, midwives and pharmacies in Rotterdam. We also gratefully acknowledge the hard work of the PhD students who have assisted with data collection. These include Nikita Schoemaker, Sabine Mous, Gerbrich van den Bosch, Ryan Muetzel, Sandra Thijssen, Andrea Wildeboer, Laura Blanken, Carolyn Langen, and Akvile Lukose. Neuroimaging studies within the Generation R are supported through the Netherlands Organization for Health Research and Development (NWO) (ZonMw TOP 40-00812-98-11021), the European Community’s 7th Framework Programme (FP7/2008–2013) under grant agreement 212652 (NUTRIMENTHE), the Stichting Sophia Kinderziekenhuis Fonds, and General Electric Healthcare. The Generation R Study is made possible by financial support from the Erasmus Medical Center, Rotterdam, the Erasmus University Rotterdam, ZonMw (ZonMW 10.000.1003), the Netherlands Organization for Scientific Research (NWO), the Ministry of Health, Welfare and Sport, and the Ministry of Youth and Families.

Conflict of interest

None of the authors have any conflicts of interest associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonya White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, T., Marroun, H.E., Nijs, I. et al. Pediatric population-based neuroimaging and the Generation R Study: the intersection of developmental neuroscience and epidemiology. Eur J Epidemiol 28, 99–111 (2013). https://doi.org/10.1007/s10654-013-9768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-013-9768-0

Keywords

Navigation