Skip to main content

Advertisement

Log in

Study of Exosomes Shed New Light on Physiology of Amyloidogenesis

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Accumulation of toxic amyloid oligomers, a key feature in the pathogenesis of amyloid-related diseases, results from an imbalance between generation and clearance of amyloidogenic proteins. Cell biology has brought to light the key roles of multivesicular endosomes (MVEs) and their intraluminal vesicles (ILVs), which can be secreted as exosomes, in amyloid generation and clearance. To better understand these roles, we have investigated a relevant physiological model of amyloid formation in pigment cells. These cells have tuned their endosomes to optimize the formation of functional amyloid fibrils from the premelanosome protein (PMEL) and to avoid potential accumulation of toxic species. The functional amyloids derived from PMEL reveal striking analogies with the generation of Aβ peptides. We have recently strengthened these analogies using extracellular vesicles as reporters of the endosomal processes that regulate PMEL melanogenesis. We have shown that in pigmented cells, apolipoprotein E (ApoE) is associated with ILVs and exosomes, and regulates the formation of PMEL amyloid fibrils in endosomes. This process secures the generation of amyloid fibrils by exploiting ILVs as amyloid-nucleating platforms. This physiological model of amyloidogenesis could shed new light on the roles of MVEs and exosomes in conditions with pathological amyloid metabolism, such as Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdul-Hay SO, Sahara T, McBride M, Kang D, Leissring MA (2012) Identification of BACE2 as an avid ß-amyloid-degrading protease. Mol Neurodegener 7:46. doi:10.1186/1750-1326-1187-1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abels ER, Breakefield XO (2015) Introduction into extracellular vesicles—biogenesis, secretion, uptake and RNA cargo loading. Cell Mol Neurobiol (in press)

  • Adema GJ, de Boer AJ, Vogel AM, Loenen WAM, Figdor CG (1994) Molecular characterization of the melanocyte lineage-specific antigen gp100. J Biol Chem 269:20126–20133

    CAS  PubMed  Google Scholar 

  • Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64(6):783–790. doi:10.1016/j.neuron.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  • Almeida CG, Takahashi RH, Gouras GK (2006) Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. J Neurosci 26:4277–4288. doi:10.1523/JNEUROSCI.5078-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, Cooper JM (2011a) Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42(3):360–367. doi:10.1016/j.nbd.2011.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011b) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345. doi:10.1038/nbt.1807

    Article  CAS  PubMed  Google Scholar 

  • An K, Klyubin I, Kim Y, Jung JH, Mably AJ, O’Dowd ST, Lynch T, Kanmert D, Lemere CA, Finan GM, Park JW, Kim TW, Walsh DM, Rowan MJ, Kim JH (2013) Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo. Mol Brain 6:47. doi:10.1186/1756-6606-6-47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Babst M (2011) MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol 23(4):452–457. doi:10.1016/j.ceb.2011.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14:677–685

    Article  CAS  PubMed  Google Scholar 

  • Bellingham SA, Guo BB, Coleman BM, Hill AF (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 3:124. doi:10.3389/fphys.2012.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357. doi:10.1038/nn.3028

    Article  CAS  PubMed  Google Scholar 

  • Berson JF, Harper DC, Tenza D, Raposo G, Marks MS (2001) Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol Biol Cell 12(11):3451–3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berson JF, Theos AC, Harper DC, Tenza D, Raposo G, Marks MS (2003) Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J Cell Biol 161(3):521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouwers JF, Aalberts M, Jansen JW, van Niel G, Wauben MH, Stout TA, Helms JB, Stoorvogel W (2013) Distinct lipid compositions of two types of human prostasomes. Proteomics 13(10–11):1660–1666. doi:10.1002/pmic.201200348

    Article  CAS  PubMed  Google Scholar 

  • Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10(5):333–344. doi:10.1038/nrn2620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL, Chothia C (1999) The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease. EMBO J 18(2):297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC, Mawuenyega KG, Cruchaga C, Goate AM, Bales KR, Paul SM, Bateman RJ, Holtzman DM (2011) Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 3(89):89ra57. doi:10.1126/scitranslmed.3002156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E (2009) Lateral organization of membrane proteins: tetraspanins spin their web. Biochem J 420(2):133–154. doi:10.1042/BJ20082422

    Article  CAS  PubMed  Google Scholar 

  • Chia PZ, Toh WH, Sharples R, Gasnereau I, Hill AF, Gleeson PA (2013) Intracellular itinerary of internalised β-secretase, BACE1, and its potential impact on β-amyloid peptide biogenesis. Traffic 14(9):997–1013. doi:10.1111/tra.12088

    Article  CAS  PubMed  Google Scholar 

  • Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu SC, Mato JM, Falcon-Perez JM (2008) Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 7(12):5157–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Andrea MR, Nagele RG, Wang HY, Peterson PA, Lee DH (2001) Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology 38:120–134

    Article  PubMed  Google Scholar 

  • Delevoye C, Giordano F, van Niel G, Raposo G (2011) Biogenesis of melanosomes—the chessboard of pigmentation. Med Sci 27(2):153–162. doi:10.1051/medsci/2011272153

    Google Scholar 

  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491. doi:10.3233/JPD-130230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dinkins MB, Dasgupta S, Wang G, Zhu G, Bieberich E (2014) Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 35(8):1792–1800. doi:10.1016/j.neurobiolaging.2014.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doens D, Fernandez PL (2014) Microglia receptors and their implications in the response to amyloid beta for Alzheimer’s disease pathogenesis. J Neuroinflammation 11:48. doi:10.1186/1742-2094-1111-1148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dominguez D, Tournoy J, Hartmann D, Huth T, Cryns K, Deforce S, Serneels L, Camacho IE, Marjaux E, Craessaerts K, Roebroek AJ, Schwake M, D’Hooge R, Bach P, Kalinke U, Moechars D, Alzheimer C, Reiss K, Saftig P, De Strooper B (2005) Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J Biol Chem 280(35):30797–30806

    Article  CAS  PubMed  Google Scholar 

  • Edgar JR, Willen K, Gouras GK, Futter CE (2015) ESCRTs regulate amyloid precursor protein sorting in multivesicular bodies and intracellular amyloid-beta accumulation. J Cell Sci 128:2520–2528. doi:10.1242/jcs.170233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30(20):6838–6851. doi:10.1523/JNEUROSCI.5699-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esterházy D, Stützer I, Wang H, Rechsteiner MP, Beauchamp J, Döbeli H, Hilpert H, Matile H, Prummer M, Schmidt A, Lieske N, Boehm B, Marselli L, Bosco D, Kerr-Conte J, Aebersold R, Spinas GA, Moch H, Migliorini C, Stoffel M (2011) Bace2 is a β cell-enriched protease that regulates pancreatic β cell function and mass. Cell Metab 14(3):365–377. doi:10.1016/j.cmet.2011.06.018

    Article  PubMed  CAS  Google Scholar 

  • Fagan AM, Holtzman DM, Munson G, Mathur T, Schneider D, Chang LK, Getz GS, Reardon CA, Lukens J, Shah JA, LaDu MJ (1999) Unique lipoproteins secreted by primary astrocytes from wild type, apoE (−/−), and human apoE transgenic mice. J Biol Chem 274(42):30001–30007

    Article  CAS  PubMed  Google Scholar 

  • Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345. doi:10.1080/15216540701283882

    Article  CAS  PubMed  Google Scholar 

  • Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci USA 101(26):9683–9688. doi:10.1073/pnas.0308413101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finder VH, Glockshuber R (2007) Amyloid-beta aggregation. Neurodegener Dis 4:13–27. doi:10.1159/000100355

    Article  CAS  PubMed  Google Scholar 

  • Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2006) Functional amyloid formation within mammalian tissue. PLoS Biol 4(1):e6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid—from bacteria to humans. Trends Biochem 32:217–224. doi:10.1016/j.tibs.2007.03.003

    Article  CAS  Google Scholar 

  • Friedrich RP, Tepper K, Rönicke R, Soom M, Westermann M, Reymann K, Kaether C, Fändrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci USA 107(5):1942–1947. doi:10.1073/pnas.0904532106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garai K, Verghese PB, Baban B, Holtzman DM, Frieden C (2014) The binding of apolipoprotein E to oligomers and fibrils of amyloid-beta alters the kinetics of amyloid aggregation. Biochemistry 53:6323–6331. doi:10.1021/bi5008172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorman PM, Yip CM, Fraser PE, Chakrabartty A (2003) Alternate aggregation pathways of the Alzheimer beta-amyloid peptide: Abeta association kinetics at endosomal pH. J Mol Biol 325:743–757

    Article  CAS  PubMed  Google Scholar 

  • Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, De Camilli P, Ferguson SM (2015) Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Natl Acad Sci USA 112(28):E3699–E3708. doi:10.1073/pnas.1510329112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwald J, Riek R (2010) Biology of amyloid: structure, function, and regulation. Structure 18:1244–1260

    Article  CAS  PubMed  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112

    Article  CAS  PubMed  Google Scholar 

  • Hammer ND, Wang X, McGuffie BA, Chapman MR (2008) Amyloids: friend or foe? J Alzheimers Dis 13:407–419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV (2015) Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 207:18–30. doi:10.1016/j.jconrel.2015.1003.1033

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356. doi:10.1126/science.1072994

    Article  CAS  PubMed  Google Scholar 

  • Harper DC, Theos AC, Herman KE, Tenza D, Raposo G, Marks MS (2008) Premelanosome amyloid-like fibrils are composed of only golgi-processed forms of Pmel17 that have been proteolytically processed in endosomes. J Biol Chem 283(4):2307–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellström AR, Watt B, Fard SS, Tenza D, Mannström P, Narfström K, Ekesten B, Ito S, Wakamatsu K, Larsson J, Ulfendahl M, Kullander K, Raposo G, Kerje S, Hallböök F, Marks MS, Andersson L (2011) Inactivation of Pmel alters melanosome shape but has only a subtle effect on visible pigmentation. PLoS Genet 7(9):e1002285. doi:10.1371/journal.pgen.1002285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho T, Watt B, Spruce LA, Seeholzer SH, Marks MS (2016) The kringle-like domain facilitates post-endoplasmic reticulum changes to premelanosome protein (PMEL) oligomerization and disulfide bond configuration and promotes amyloid formation. J Biol Chem 291(7):3595–3612

    Article  CAS  PubMed  Google Scholar 

  • Hoashi T, Muller J, Vieira WD, Rouzaud F, Kikuchi K, Tamaki K, Hearing VJ (2006) The repeat domain of the melanosomal matrix protein PMEL17/GP100 is required for the formation of organellar fibers. J Biol Chem 281(30):21198–21208

    Article  CAS  PubMed  Google Scholar 

  • Holtzman DM, Herz J, Bu G (2012) Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006312. doi:10.1101/cshperspect.a006312

    PubMed  PubMed Central  Google Scholar 

  • Hori Y, Hashimoto T, Nomoto H, Hyman BT, Iwatsubo T (2015) Role of apolipoprotein E in beta-amyloidogenesis: isoform-specific effects on protofibril to fibril conversion of Abeta in vitro and brain Abeta deposition in vivo. J Biol Chem 290:15163–15174. doi:10.1074/jbc.M114.622209

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee JM (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci USA 106(48):20324–20329. doi:10.1073/pnas.0911281106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurbain I, Geerts WJ, Boudier T, Marco S, Verkleij AJ, Marks MS, Raposo G (2008) Electron tomography of early melanosomes: implications for melanogenesis and the generation of fibrillar amyloid sheets. Proc Natl Acad Sci USA 105(50):19726–19731. doi:10.1073/pnas.0803488105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihara Y, Morishima-Kawashima M, Nixon R (2012) The ubiquitin-proteasome system and the autophagic-lysosomal system in Alzheimer disease. Cold Spring Harb Perspect Med. doi:10.1101/cshperspect.a006361

    PubMed  PubMed Central  Google Scholar 

  • Ishida BY, Bailey KR, Duncan KG, Chalkley RJ, Burlingame AL, Kane JP, Schwartz DM (2004) Regulated expression of apolipoprotein E by human retinal pigment epithelial cells. J Lipid Res 45(2):263–271

    Article  CAS  PubMed  Google Scholar 

  • Ji ZS, Müllendorff K, Cheng IH, Miranda RD, Huang Y, Mahley RW (2006) Reactivity of apolipoprotein E4 and amyloid beta peptide: lysosomal stability and neurodegeneration. J Biol Chem 281(5):2683–2692

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Lee JC (2014) Lysophospholipid-containing membranes modulate the fibril formation of the repeat domain of a human functional amyloid, pmel17. J Mol Biol 426(24):4074–4086. doi:10.1016/j.jmb.2014.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Q, Lee CY, Mandrekar S, Wilkinson B, Cramer P, Zelcer N, Mann K, Lamb B, Willson TM, Collins JL, Richardson JC, Smith JD, Comery TA, Riddell D, Holtzman DM, Tontonoz P, Landreth GE (2008) ApoE promotes the proteolytic degradation of Abeta. Neuron 58(5):681–693. doi:10.1016/j.neuron.2008.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson LV, Forest DL, Banna CD, Radeke CM, Maloney MA, Hu J, Spencer CN, Walker AM, Tsie MS, Bok D, Radeke MJ, Anderson DH (2011) Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration. Proc Natl Acad Sci USA 108(45):18277–18282. doi:10.1073/pnas.1109703108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovic M, Sharma M, Rahajeng J, Caplan S (2010) The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 25:99–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R (2013) The Alzheimer’s β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 126(3):329–352. doi:10.1007/s00401-013-1152-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanekiyo T, Bu G (2014) The low-density lipoprotein receptor-related protein 1 and amyloid-beta clearance in Alzheimer’s disease. Front Aging Neurosci 6:93. doi:10.3389/fnagi.2014.00093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanekiyo T, Xu H, Bu G (2014) ApoE and Abeta in Alzheimer’s disease: accidental encounters or partners? Neuron 81:740–754. doi:10.1016/j.neuron.2014.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson O, Lindquist NG (2013) Melanin affinity and its possible role in neurodegeneration. J Neurol Transm 120:1623–1630. doi:10.1007/s00702-013-1062-5

    Article  CAS  Google Scholar 

  • Kawaguchi M, Hozumi Y, Suzuki T (2015) ADAM protease inhibitors reduce melanogenesis by regulating PMEL17 processing in human melanocytes. J Dermatol Sci 78:133–142. doi:10.1016/j.jdermsci.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  • Kimura N, Yanagisawa K (2007) Endosomal accumulation of GM1 ganglioside-bound amyloid beta-protein in neurons of aged monkey brains. Neuroreport 18:1669–1673. doi:10.1097/WNR.0b013e3282f0d2ab

    Article  CAS  PubMed  Google Scholar 

  • Kockx M, Jessup W, Kritharides L (2008) Regulation of endogenous apolipoprotein E secretion by macrophages. Arterioscler Thromb Vasc Biol 28(6):1060–1067. doi:10.1161/ATVBAHA.108.164350

    Article  CAS  PubMed  Google Scholar 

  • Krämer-Albers EM, Bretz N, Tenzer S, Winterstein C, Möbius W, Berger H, Nave KA, Schild H, Trotter J (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin 1(11):1446–1461

    Article  CAS  Google Scholar 

  • Kummer MP, Maruyama H, Huelsmann C, Baches S, Weggen S, Koo EH (2009) Formation of Pmel17 amyloid is regulated by juxtamembrane metalloproteinase cleavage, and the resulting C-terminal fragment is a substrate for gamma-secretase. J Biol Chem 284(4):2296–2306. doi:10.1074/jbc.M808904200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushimoto T, Basrur V, Valencia J, Matsunaga J, Vieira WD, Ferrans VJ, Muller J, Appella E, Hearing VJ (2001) A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Proc Natl Acad Sci USA 98(19):10698–10703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon BS, Halaban R, Kim GS, Usack L, Pomerantz S, Haq AK (1987) A melanocyte-specific complementary DNA clone whose expression is inducible by melanotropin and isobutylmethyl xanthine. Mol Biol Med 4(6):339–355

    CAS  PubMed  Google Scholar 

  • Lednev IK (2014) Amyloid fibrils: the eighth wonder of the world in protein folding and aggregation. Biophys J 106:1433–1435. doi:10.1016/j.bpj.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CY, Tse W, Smith JD, Landreth GE (2012) Apolipoprotein E promotes beta-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem 287:2032–2044. doi:10.1074/jbc.M2111.295451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MJ, Lee JH, Rubinsztein DC (2013) Tau degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog Neurobiol 105:49–59. doi:10.1016/j.pneurobio.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt RM, Vigneron N, Rahner C, Van den Eynde BJ, Cresswell P (2010) Endoplasmic reticulum (ER)-export, subcellular distribution and fibril formation by PMEL17 requires an intact N-terminal domain junction. J Biol Chem 285(21):16166–16683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonhardt RM, Vigneron N, Rahner C, Cresswell P (2011) Proprotein convertases process Pmel17 during secretion. J Biol Chem 286(11):9321–9337. doi:10.1074/jbc.M110.168088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonhardt RM, Vigneron N, Hee JS, Graham M, Cresswell P (2013) Critical residues in the PMEL/Pmel17N-terminus direct the hierarchical assembly of melanosomal fibrils. Mol Biol Cell 24(7):964–981. doi:10.1091/mbc.E12-10-0742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Kanekiyo T, Shinohara M, Zhang Y, LaDu MJ, Xu H, Bu G (2012) Differential regulation of amyloid-β endocytic trafficking and lysosomal degradation by apolipoprotein E isoforms. J Biol Chem 287(53):44593–44601. doi:10.1074/jbc.M112.420224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Reed MN, Kotilinek LA, Grant MK, Forster CL, Qiang W, Shapiro SL, Reichl JH, Chiang AC, Jankowsky JL, Wilmot CM, Cleary JP, Zahs KR, Ashe KH (2015) Quaternary structure defines a large class of amyloid-β oligomers neutralized by sequestration. Cell Rep 11(11):1760–1771. doi:10.1016/j.celrep.2015.05.021

    Article  CAS  PubMed  Google Scholar 

  • Lo Cicero A, Stahl PD, Raposo G (2015) Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 35:69–77. doi:10.1016/j.ceb.2015.04.013

    Article  CAS  PubMed  Google Scholar 

  • Lopes VS, Wasmeier C, Seabra MC, Futter CE (2007) Melanosome maturation defect in Rab38-deficient retinal pigment epithelium results in instability of immature melanosomes during transient melanogenesis. Mol Biol Cell 18(10):3914–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luzio JP, Hackmann Y, Dieckmann NM, Griffiths GM (2014) The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Med 6:a016840. doi:10.1101/cshperspect.a016840

    Article  CAS  Google Scholar 

  • Ly S, Altman R, Petrlova J, Lin Y, Hilt S, Huser T, Laurence TA, Voss JC (2013) Binding of apolipoprotein E inhibits the oligomer growth of amyloid-β peptide in solution as determined by fluorescence cross-correlation spectroscopy. J Biol Chem 288(17):11628–11635. doi:10.1074/jbc.M112.411900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Yee A, Brewer HB, Das S, Potter H (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372:92–94. doi:10.1038/372092a372090

    Article  CAS  PubMed  Google Scholar 

  • Mahley RW, Rall SC (2000) Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet 1:507–537. doi:10.1146/annurev.genom.1.1.507

    Article  CAS  PubMed  Google Scholar 

  • Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325(5938):328–332. doi:10.1126/science.1173155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maresh GA, Marken JS, Neubauer M, Aruffo A, Hellström I, Hellström KE, Marquardt H (1994a) Cloning and expression of the gene for the melanoma-associated ME20 antigen. DNA Cell Biol 13(2):87–95

    Article  CAS  PubMed  Google Scholar 

  • Maresh GA, Wang WC, Beam KS, Malacko AR, Hellström I, Hellström KE, Marquardt H (1994b) Differential processing and secretion of the melanoma-associated ME20 antigen. Arch Biochem Biophys 311(1):95–102

    Article  CAS  PubMed  Google Scholar 

  • Maxfield FR (2014) Role of endosomes and lysosomes in human disease. Cold Spring Harb Perspect Med 6:a016931. doi:10.1101/cshperspect.a016931

    Article  CAS  Google Scholar 

  • McGlinchey RP, Shewmaker F, McPhie P, Monterroso B, Thurber K, Wickner RB (2009) The repeat domain of the melanosome fibril protein Pmel17 forms the amyloid core promoting melanin synthesis. Proc Natl Acad Sci USA 106(33):13731–13736. doi:10.1073/pnas.0906509106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel E, Chamoun Z, Lasiecka ZM, Chan RB, Williamson RL, Vetanovetz C, Dall’Armi C, Simoes S, Point Du Jour KS, McCabe BD, Small SA, Di Paolo G (2013) Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nat Commun 4:2250. doi:10.1038/ncomms3250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Ves. doi:10.3402/jev.v3.24641

    Google Scholar 

  • Nalivaeva NN, Belyaev ND, Kerridge C, Turner AJ (2014) Amyloid-clearing proteins and their epigenetic regulation as a therapeutic target in Alzheimer’s disease. Front Aging Neurosci 6:235. doi:10.3389/fnagi.2014.00235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neumann U, Rueeger H, Machauer R, Veenstra SJ, Lueoend RM, Tintelnot-Blomley M, Laue G, Beltz K, Vogg B, Schmid P, Frieauff W, Shimshek DR, Staufenbiel M, Jacobson LH (2015) A novel BACE inhibitor NB-360 shows a superior pharmacological profile and robust reduction of amyloid-β and neuroinflammation in APP transgenic mice. Mol Neurodegener 10:44. doi:10.1186/s13024-015-0033-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nogales E, Scheres SH (2015) Cryo-EM: a unique tool for the visualization of macromolecular complexity. Mol Cell 58(4):677–689. doi:10.1016/j.molcel.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  • Papageorgiou N, Carpenter E, Scally AJ, Tobin DJ (2008) Adult human epidermal melanocytes for neurodegeneration research. Neuroreport 19:1787–1791. doi:10.1097/WNR.0b1013e3283193e82

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891. doi:10.1038/nm.2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pencheva N, Tran H, Buss C, Huh D, Drobnjak M, Busam K, Tavazoie SF (2012) Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151(5):1068–1082. doi:10.1016/j.cell.2012.10.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E (2012) The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem 287:43108–43115. doi:10.1074/jbc.M112.404467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peric A, Annaert W (2015) Early etiology of Alzheimer’s disease: tipping the balance toward autophagy or endosomal dysfunction? Acta Neuropathol 129:363–381. doi:10.1007/s00401-014-1379-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfefferkorn CM, McGlinchey RP, Lee JC (2010) Effects of pH on aggregation kinetics of the repeat domain of a functional amyloid, Pmel17. Proc Natl Acad Sci USA 107(50):21447–21452. doi:10.1073/pnas.1006424107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham CL, Kwan AH, Sunde M (2014) Functional amyloid: widespread in nature, diverse in purpose. Essays Biochem 56:207–219. doi:10.1042/bse0560207

    Article  PubMed  Google Scholar 

  • Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH (1987) Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B, E(LDL) receptors in the brain. J Biol Chem 262:14352–14360

    CAS  PubMed  Google Scholar 

  • Rajendran L, Annaert W (2012) Membrane trafficking pathways in Alzheimer’s disease. Traffic 13:759–770

    Article  CAS  PubMed  Google Scholar 

  • Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci USA 103(30):11172–11177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran L, Knobloch M, Geiger KD, Dienel S, Nitsch R, Simons K, Konietzko U (2007) Increased Abeta production leads to intracellular accumulation of Abeta in flotillin-1-positive endosomes. Neurodegener Dis 4(2–3):164–170

    Article  CAS  PubMed  Google Scholar 

  • Rajendran L, Bali J, Barr MM, Court FA, Krämer-Albers E-M, Picou F, Raposo G, van der Vos KE, van Niel G, Wang J, Breakefield XO (2014) Emerging roles of extracellular vesicles in the nervous system. J Neurosci 34(46):15482–15489. doi:10.1523/JNEUROSCI.3258-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raposo G, Marks MS (2007) Melanosomes–dark organelles enlighten endosomal membrane transport. Nat Rev Mol Cell Biol 8(10):786–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Tenza D, Murphy DM, Berson JF, Marks MS (2001) Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J Cell Biol 152(4):809–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebeck GW, LaDu MJ, Estus S, Bu G, Weeber EJ (2006) The generation and function of soluble apoE receptors in the CNS. Mol Neurodegener 1:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reyes MG, Faraldi F, Rydman R, Wang CC (2003) Decreased nigral neuromelanin in Alzheimer’s disease. Neurol Res 25(2):179–182

    Article  PubMed  Google Scholar 

  • Robila V, Ostankovitch M, Altrich-Vanlith ML, Theos AC, Drover S, Marks MS, Restifo N, Engelhard VH (2008) MHC class II presentation of gp100 epitopes in melanoma cells requires the function of conventional endosomes and is influenced by melanosomes. J Immunol 181(11):7843–7852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochin L, Hurbain I, Serneels L, Fort C, Watt B, Leblanc P, Marks MS, De Strooper B, Raposo G, van Niel G (2013) BACE2 processes PMEL to form the melanosome amyloid matrix in pigment cells. Proc Natl Acad Sci USA 110:10658–10663. doi:10.1073/pnas.1220748110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider A, Simons M (2013) Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 352:33–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schraermeyer U (1995) Transport of endocytosed material into melanin granules in cultured choroidal melanocytes of cattle—new insights into the relationship of melanosomes with lysosomes. Pigment Cell Res 8:209–214

    Article  CAS  PubMed  Google Scholar 

  • Schraermeyer U, Dohms M (1996) Detection of a fine lamellar gridwork after degradation of ocular melanin granules by cultured peritoneal macrophages. Pigment Cell Res 9:248–254

    Article  CAS  PubMed  Google Scholar 

  • Schraermeyer U, Peters S, Thumann G, Kociok N, Heimann K (1999) Melanin granules of retinal pigment epithelium are connected with the lysosomal degradation pathway. Exp Eye Res 68:237–245

    Article  CAS  PubMed  Google Scholar 

  • Seiji M, Shimao K, Birbeck MS, Fitzpatrick TB (1963) Subcellular localization of melanin biosynthesis. Ann N Y Acad Sci 100:497–533

    CAS  PubMed  Google Scholar 

  • Serrano-Pozo A, Qian J, Monsell SE, Betensky RA, Hyman BT (2015) APOEε2 is associated with milder clinical and pathological Alzheimer disease. Ann Neurol 77(6):917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharples RA, Vella LJ, Nisbet RM, Naylor R, Perez K, Barnham KJ, Masters CL, Hill AF (2008) Inhibition of gamma-secretase causes increased secretion of amyloid precursor protein C-terminal fragments in association with exosomes. FASEB J 22(5):1469–1478. doi:10.1096/fj.07-9357com

    Article  CAS  PubMed  Google Scholar 

  • Stockley JH, O’Neill C (2007) The proteins BACE1 and BACE2 and beta-secretase activity in normal and Alzheimer’s disease brain. Biochem Soc Trans 35(Pt 3):574–576

    Article  CAS  PubMed  Google Scholar 

  • Stützer I, Selevsek N, Esterházy D, Schmidt A, Aebersold R, Stoffel M (2013) Systematic proteomic analysis identifies β-site amyloid precursor protein cleaving enzyme 2 and 1 (BACE2 and BACE1) substrates in pancreatic β-cells. J Biol Chem 288(15):10536–10547. doi:10.1074/jbc.M112.444703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su Y, Chang PT (2001) Acidic pH promotes the formation of toxic fibrils from beta-amyloid peptide. Brain Res 893:287–291

    Article  CAS  PubMed  Google Scholar 

  • Takahashi RH, Milner TA, Li F, Nam EE, Edgar MA, Yamaguchi H, Beal MF, Xu H, Greengard P, Gouras GK (2002) Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology. Am J Pathol 161(5):1869–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11(8):457–470. doi:10.1038/nrneurol.2015.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JD, Matthews SJ (2015) New insight into the molecular control of bacterial functional amyloids. Front Cell Infect Microbiol 5:33. doi:10.3389/fcimb.2015.00033

    Article  PubMed  PubMed Central  Google Scholar 

  • Theos AC, Truschel ST, Raposo G, Marks MS (2005) The silver locus product Pmel17/gp100/Silv/ME20: controversial in name and in function. Pigment Cell Res 18:322–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theos AC, Truschel ST, Tenza D, Hurbain I, Harper DC, Berson JF, Thomas PC, Raposo G, Marks MS (2006a) A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev Cell 10(3):343–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theos AC, Berson JF, Theos SC, Herman KE, Harper DC, Tenza D, Sviderskaya EV, Lamoreux ML, Bennett DC, Raposo G, Marks MS (2006b) Dual loss of ER export and endocytic signals with altered melanosome morphology in the silver mutation of Pmel17. Mol Biol Cell 17(8):3598–3612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  CAS  PubMed  Google Scholar 

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  • Valencia JC, Rouzaud F, Julien S, Chen KG, Passeron T, Yamaguchi Y, Abu-Asab M, Tsokos M, Costin GE, Yamaguchi H, Jenkins LM, Nagashima K, Appella E, Hearing VJ (2007) Sialylated core 1 O-glycans influence the sorting of Pmel17/gp100 and determine its capacity to form fibrils. J Biol Chem 282(15):11266–11280

    Article  CAS  PubMed  Google Scholar 

  • van Bebber F, Hruscha A, Willem M, Schmid B, Haass C (2013) Loss of Bace2 in zebrafish affects melanocyte migration and is distinct from Bace1 knock out phenotypes. J Neurochem 127(4):471–481. doi:10.1111/jnc.12198

    Article  PubMed  CAS  Google Scholar 

  • Van Den Bossche K, Naeyaert JM, Lambert J (2006) The quest for the mechanism of melanin transfer. Traffic 7(7):769–778

    Article  CAS  Google Scholar 

  • van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G (2011) The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell 21(4):708–721. doi:10.1016/j.devcel.2011.08.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Niel G, Bergam P, Di Cicco A, Hurbain I, Lo Cicero A, Dingli F, Palmulli R, Fort C, Potier MC, Schurgers LJ, Loew D, Levy D, Raposo G (2015) Apolipoprotein E regulates amyloid formation within endosomes of pigment cells. Cell Rep 13(1):43–51. doi:10.1016/j.celrep.2015.1008.1057

    Article  PubMed  CAS  Google Scholar 

  • Vassar R, Kuhn PH, Haass C, Kennedy ME, Rajendran L, Wong PC, Lichtenthaler SF (2014) Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 130(1):4–28. doi:10.1111/jnc.12715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37:323–332

    Article  CAS  PubMed  Google Scholar 

  • Verbeek MM, Otte-Holler I, Fransen JA, de Waal RM (2002) Accumulation of the amyloid-beta precursor protein in multivesicular body-like organelles. J Histochem Cytochem 50:681–690

    Article  CAS  PubMed  Google Scholar 

  • Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, Bu G, Frieden C, Holtzman DM (2013) ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci USA 110(19):E1807–E1816. doi:10.1073/pnas.1220484110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vingtdeux V, Sergeant N, Buee L (2012) Potential contribution of exosomes to the prion-like propagation of lesions in Alzheimer’s disease. Front Physiol 3:229. doi:10.3389/fphys.2012.00229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AL, Lukas TJ, Yuan M, Du N, Tso MO, Neufeld AH (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4(1):e4160. doi:10.1371/journal.pone.0004160

    Article  PubMed  PubMed Central  Google Scholar 

  • Watt B, van Niel G, Fowler DM, Hurbain I, Luk KC, Stayrook SE, Lemmon MA, Raposo G, Shorter J, Kelly JW, Marks MS (2009) N-terminal domains elicit formation of functional Pmel17 amyloid fibrils. J Biol Chem 284(51):35543–35555. doi:10.1074/jbc.M109.047449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt B, Tenza D, Lemmon MA, Kerje S, Raposo G, Andersson L, Marks MS (2011) Mutations in or near the transmembrane domain alter PMEL amyloid formation from functional to pathogenic. PLoS Genet 7(9):e1002286. doi:10.1371/journal.pgen.1002286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt B, van Niel G, Raposo G, Marks MS (2013) PMEL: a pigment cell-specific model for functional amyloid formation. Pigment Cell Mel Res 26:300–315. doi:10.1111/pcmr.12067

    Article  CAS  Google Scholar 

  • Whelly S, Johnson S, Powell J, Borchardt C, Hastert MC, Cornwall GA (2012) Nonpathological extracellular amyloid is present during normal epididymal sperm maturation. PLoS One 7(5):e36394. doi:10.1371/journal.pone.0036394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE (2013) Evidence for impaired amyloid beta clearance in Alzheimer’s disease. Alzheimer’s Res Ther 5:33. doi:10.1186/alzrt1187

    Article  CAS  Google Scholar 

  • Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Burchett JM, Schuler DR, Cirrito JR, Diwan A, Lee JM (2014) Enhancing astrocytic lysosome biogenesis facilitates Aβ clearance and attenuates amyloid plaque pathogenesis. J Neurosci 34(29):9607–9620. doi:10.1523/JNEUROSCI.3788-13.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yaar M, Park HY (2012) Melanocytes: a window into the nervous system. J Invest Derm 132:835–845. doi:10.1038/jid.2011.386

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Chang TY, Haass C, Ihara Y (2001) Accumulation and aggregation of amyloid beta-protein in late endosomes of Niemann-pick type C cells. J Biol Chem 276:4454–4460. doi:10.1074/jbc.M009598200

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa K (2015) GM1 ganglioside and Alzheimer’s disease. Glycoconjugate J 32:87–91. doi:10.1007/s10719-10015-19579-10715

    Article  CAS  Google Scholar 

  • Yang AJ, Chandswangbhuvana D, Margol L, Glabe CG (1998) Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta1-42 pathogenesis. J Neurosci Res 52:691–698

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yim YI, Park BC, Yadavalli R, Zhao X, Eisenberg E, Greene LE (2015) The multivesicular body is the major internal site of prion conversion. J Cell Sci 128(7):1434–1443. doi:10.1242/jcs.165472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuyama K, Yamamoto N, Yanagisawa K (2006) Chloroquine-induced endocytic pathway abnormalities: cellular model of GM1 ganglioside-induced Abeta fibrillogenesis in Alzheimer’s disease. FEBS Lett 580:6972–6976. doi:10.1016/j.febslet.2006.11.072

    Article  CAS  PubMed  Google Scholar 

  • Yuyama K, Yamamoto N, Yanagisawa K (2008) Accelerated release of exosome-associated GM1 ganglioside (GM1) by endocytic pathway abnormality: another putative pathway for GM1-induced amyloid fibril formation. J Neurochem 105:217–224. doi:10.1111/j.1471-4159.2007.05128.x

    Article  CAS  PubMed  Google Scholar 

  • Yuyama K, Sun H, Mitsutake S, Igarashi Y (2012) Sphingolipid-modulated exosome secretion promotes the clearance of amyloid-β by microglia. J Biol Chem 287(14):10977–10989. doi:10.1074/jbc.M111.324616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuyama K, Sun H, Sakai S, Mitsutake S, Okada M, Tahara H, Furukawa J, Fujitani N, Shinohara Y, Igarashi Y (2014) Decreased amyloid-β pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. J Biol Chem 289(35):24488–24498. doi:10.1074/jbc.M114.577213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuyama K, Sun H, Usuki S, Sakai S, Hanamatsu H, Mioka T, Kimura N, Okada M, Tahara H, Furukawa J, Fujitani N, Shinohara Y, Igarashi Y (2015) A potential function for neuronal exosomes: sequestering intracerebral amyloid-β peptide. FEBS Lett 589(1):84–88. doi:10.1016/j.febslet.2014.11.027

    Article  CAS  PubMed  Google Scholar 

  • Zucca FA, Basso E, Cupaioli FA, Ferrari E, Sulzer D, Casella L, Zecca L (2014) Neuromelanin of the human substantia nigra: an update. Neurotox Res 25(1):13–23. doi:10.1007/s12640-013-9435-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to C. Bissig and Graça Raposo for critical reading of the manuscript, and A. di Cicco and D. Levy for the cryo-electron microscopy images of exosomes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume van Niel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Niel, G. Study of Exosomes Shed New Light on Physiology of Amyloidogenesis. Cell Mol Neurobiol 36, 327–342 (2016). https://doi.org/10.1007/s10571-016-0357-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0357-0

Keywords

Navigation