Skip to main content
Log in

Twenty-first century brain banking: practical prerequisites and lessons from the past: the experience of New York Brain Bank, Taub Institute, Columbia University

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Generally accepted methods for processing postmortem brains are lacking, despite the efforts of pioneers in the field, and the growing awareness of the importance of brain banking for investigating the pathogenesis of illnesses unique to humans. Standardizing methods requires compromises, institutional or departmental mindset promoting collaboration, and the willingness to share ideas, information, and samples. A sound balance between competition and institutional interests is needed to best fulfill the tasks entrusted to health care institutions. Thus, a potentially widely accepted protocol design involves tradeoffs. We successfully integrated brain banking within the operation of the department of pathology. We reached a consensus whereby a brain can be utilized for diagnosis, research, and teaching. Thus, routing brains away from residency programs is avoided. The best diagnostic categorization possible is being secured and the yield of samples for research maximized. Thorough technical details pertaining to the actual processing of brains donated for research were recently published. Briefly, one-half of each brain is immersed in formalin for performing the neuropathologic evaluation, which is combined with the teaching task. The contralateral half is extensively dissected at the fresh state to obtain samples ready for immediate disbursement once categorized diagnostically. The samples are tracked electronically, which is crucial. This important tracking system is described separately in this issue. This report focuses on key lessons learned over the past 25 years of brain banking including successful solutions to originally unforeseen problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alafuzoff I, Parkkinen L, Al-Sarraf S et al (2008) Assessment of α-synuclein pathology: a study of the BrainNet Europe Consortium. J Neuropathol Exp Neurol 67:125–143

    Article  PubMed  Google Scholar 

  • Alzheimer A (1911) Über eigenartige Krankheitsfälle des späteren Alters. Zeitschrift für die gesamte Neurologie und Psychiatrie (Berlin) 4:356–385

    Article  Google Scholar 

  • Aström K-E, Mancall EL, Richardson EP Jr (1958) Progressive multifocal leuko-encephalopathy. A hitherto unrecognized complication of chronic lymphatic leukaemia and Hodgkin’s disease. Brain 81:93–111. doi:10.1093/brain/81.1.93

    Article  PubMed  Google Scholar 

  • Bertrand I, van Bogaert L (1925) La sclérose latérale amyotrophique (anatomie pathologique). Rev Neurol (Paris) 1:779–806

    Google Scholar 

  • Bird ED, Vonsattel J-P (1993) The development of a brain bank. J Neural Transm 39(Suppl):17–23

    CAS  Google Scholar 

  • Birkmayer W, Hornykiewicz O (1998) The effect of l-3,4-dihydroxyphenylalanine (=DOPA) on akinesia in parkinsonism. Parkinsonism Relat Disord 4:59–60. doi:10.1016/S1353-8020(98)00013-3

    Article  PubMed  CAS  Google Scholar 

  • Blocq P, Marinesco G (1893) Sur un cas de tremblement parkinsonien hémiplégique symptomatique d’une tumeur du pédoncule cérébral. C R Seances Soc Biol Fil 5:105–111

    Google Scholar 

  • Brown P, Gibbs CJ, Rodgers-Johnson P et al (1994) Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol 35:513–529. doi:10.1002/ana.410350504

    Article  PubMed  CAS  Google Scholar 

  • Cairns NJ, Bigio EH, Mackenzie IRA et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neurochir (Wien) 114:5–22

    Google Scholar 

  • Davison C (1941) Amyotrophic lateral sclerosis. Origin and extent of the upper motor neuron lesion. Arch Neurol Psychiatry 46:1039–1056

    Google Scholar 

  • Dickson DW, Feany MB, Yen S-H et al (1996) Cytoskeletal pathology in non-Alzheimer degenerative dementia: new lesions in diffuse Lewy body disease, Pick’s disease, and corticobasal degeneration. J Neural Transm 47(Suppl):31–46

    CAS  Google Scholar 

  • Duyckaerts C, Sazdovitch V, Seilhean D et al (1993) A brain bank in a neuropathology laboratory (with some emphasis on diagnostic criteria). J Neural Transm 39(Suppl):107–118

    CAS  Google Scholar 

  • Ehringer H, Hornykiewicz O (1998) Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Parkinsonism Relat Disord 4:53–57. doi:10.1016/S1353-8020(98)00012-1

    Article  PubMed  CAS  Google Scholar 

  • Grinberg LT, de Lucena Ferretti RE, Farfel JM et al (2007) Brain bank of the Brazilian aging brain study group—a milestone reached and more than 1,600 collected brains. Cell Tissue Bank 8:151–162. doi:10.1007/s10561-006-9022-z

    Article  PubMed  Google Scholar 

  • Gsell W, Lange KW, Pfeuffer R et al (1993) How to run a brain bank. A report from the Austro-German brain bank. J Neural Transm 39(Suppl):31–70

    CAS  Google Scholar 

  • Hainfellner JA, Wanschitz J, Jellinger K et al (1998) Coexistence of Alzheimer-type neuropathology in Creutzfeldt-Jakob disease. Acta Neuropathol 96:116–122. doi:10.1007/s004010050870

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O (2004) Oleh Hornykiewicz. Hist Neurosci Autobiography 4:242–281

    Google Scholar 

  • Hughes AJ, Daniel SE, Kilford L et al (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    PubMed  CAS  Google Scholar 

  • Hulette CM (2003) Brain banking in the United States. J Neuropathol Exp Neurol 62:715–722

    PubMed  Google Scholar 

  • Hulette CM, Welsh-Bohmer KA, Crain B et al (1997) Rapid brain autopsy. The Joseph and Kathleen Bryan Alzheimer’s Disease Research Center experience. Arch Pathol Lab Med 121:615–618

    PubMed  CAS  Google Scholar 

  • Ioannidis JPA (2005) Why most published research findings are false. PLoS Med 2:e124. doi:10.1371/journal.pmed.0020124

    Article  PubMed  Google Scholar 

  • Katelaris A, Kencian J, Duflou J et al (1994) Brain at necropsy: to fix or not to fix? J Clin Pathol 47:718–720. doi:10.1136/jcp.47.8.718

    Article  PubMed  CAS  Google Scholar 

  • Keller CE, Amaya MdP, Cortes E, Mancevska K, Vonsattel JPG (2008) Electronic tracking of human brain samples for research. Cell Tissue Bank. doi: 10.1007/s10561-008-9078-z

    Google Scholar 

  • Kiesselbach G (1914) Anatomischer Befund eines Falles von Huntingtonscher Chorea. Monatsschr Psychiatr Neurol 35:525–543

    Google Scholar 

  • Leuba G, Saini K, Savioz A et al (2000) Early-onset familial Alzheimer disease with coexisting β-amyloid and prion pathology. JAMA 283:1689–1691. doi:10.1001/jama.283.13.1689-a

    Article  PubMed  CAS  Google Scholar 

  • Monfort JC, Javoy-Agid F, Hauw JJ et al (1985) Brain glutamate decarboxylase in Parkinson’s disease with particular reference to a premortem severity index. Brain 108:301–313. doi:10.1093/brain/108.2.301

    Article  PubMed  Google Scholar 

  • Newcombe J, Cuzner ML (1993) Organization and research applications of the U.K. Multiple Sclerosis Society Tissue Bank. J Neural Transm 39(Suppl):155–163

    CAS  Google Scholar 

  • Piccardo P, Dlouhy SR, Lievens PMJ et al (1998) Phenotypic variability of Gerstmann-Sträussler-Scheinker disease is associated with prion protein heterogeneity. J Neuropathol Exp Neurol 57:979–988. doi:10.1097/00005072-199810000-00010

    Article  PubMed  CAS  Google Scholar 

  • Ravid R, Swaab DF (1993) The Netherlands brain bank—a clinico-pathological link in aging and dementia research. J Neural Transm 39(Suppl):143–153

    CAS  Google Scholar 

  • Ravid R, van Zwieten EJ, Swaab DF (1992) Brain banking and the human hypothalamus—factors to match for, pitfalls and potentials. Prog Brain Res 93:83–95

    Article  PubMed  CAS  Google Scholar 

  • Rebeiz JJ, Kolodny EH, Richardson EP Jr (1968) Corticodentatonigral degeneration with neuronal achromasia. Arch Neurol 18:20–33

    PubMed  CAS  Google Scholar 

  • Schmitt A, Bauer M, Heinsen H et al (2007) How a neuropsychiatric brain bank should be run: a consensus paper of Brainnet Europe II. J Neural Transm 114:527–537. doi:10.1007/s00702-006-0601-8

    Article  PubMed  CAS  Google Scholar 

  • Swaab DF, Grunke-Iqbal I, Iqbal K et al (1992) τ and ubiquitin in the human hypothalamus in aging and Alzheimer’s disease. Brain Res 590:239–249. doi:10.1016/0006-8993(92)91101-J

    Article  PubMed  CAS  Google Scholar 

  • Tourtellotte WW, Rosario IP, Conrad A et al (1993) Human neuro-specimen banking 1961–1992. J Neural Transm 39(Suppl):5–15

    CAS  Google Scholar 

  • Trétiakoff C (1919) Contributions a l'etude de l'anatomie pathologique du locus niger de soemmering avec quelques deductions relatives a la pathogenie des troubles de tonus musculaire et de la maladie de Parkinson. Paris: Thesis

  • van de Nes JAP, Kamphorst W, Ravid R et al (1993) The distribution of Alz-50 immunoreactivity in the hypothalamus and adjoining areas of Alzheimer’s disease patients. Brain 116:103–115

    Article  PubMed  Google Scholar 

  • van Zwieten EJ, Ravid R, van der Sluis PJ et al (1991) Increased vasopressin immunoreactivity in the rat brain after a postmortem interval of 6 hours. Brain Res 550:263–267

    Article  PubMed  Google Scholar 

  • Vonsattel J-PG, Aizawa H, Ge P et al (1995) An improved approach to prepare human brains for research. J Neuropathol Exp Neurol 54:42–56

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel JP, Amaya MdP, Keller CE (2008) Twenty-first century brain banking. Processing brains for research: the Columbia University methods. Acta Neuropathol 115(5):509–532

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health and National Institute on Aging: P01-AG07232, R37-AG15473, and P50-AG08702, the Hereditary Disease Foundation, the Iseman Fund, and the Rudin Fund. The authors are grateful to Mkeba Cason for her help. The New York Brain Bank of the Taub Institute of the Columbia University is especially thankful to the numerous pathologists who referred case material, and to the families of the patients for providing brain tissue for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Paul G. Vonsattel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vonsattel, J.P.G., Amaya, M.d.P., Cortes, E.P. et al. Twenty-first century brain banking: practical prerequisites and lessons from the past: the experience of New York Brain Bank, Taub Institute, Columbia University. Cell Tissue Banking 9, 247–258 (2008). https://doi.org/10.1007/s10561-008-9079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-008-9079-y

Keywords

Navigation