Skip to main content

Advertisement

Log in

Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Brain banks are facilities providing an interface between generous donation of nervous tissues and research laboratories devoted to increase our understanding of the diseases of the nervous system, discover new diagnostic targets, and develop new strategies. Considering this crucial role, it is important to learn about the suitabilities, limitations and proper handling of individual brain samples for particular studies. Several factors may interfere with preservation of DNA, RNA, proteins and lipids, and, therefore, special care must be taken first to detect sub-optimally preserved tissues and second to provide adequate material for each specific purpose. Basic aspects related with DNA, RNA and protein preservation include agonal state, post-mortem delay, temperature of storage and procedures of tissue preservation. Examination of DNA and RNA preservation is best done by using bioanalyzer technologies instead of less sensitive methods such as agarose gels. Adequate RNA preservation is mandatory in RNA microarray studies and adequate controls are necessary for proper PCR validation. Like for RNA, the preservation of proteins is not homogeneous since some molecules are more vulnerable than others. This aspect is crucial in the study of proteins including expression levels and possible post-translational modifications. Similarly, the reliability of functional and enzymatic studies in human post-mortem brain largely depends on protein preservation. Much less is known about other aspects, such as the effects of putative deleterious factors on epigenetic events such as methylation of CpGs in gene promoters, nucleosome preservation, histone modifications, and conservation of microRNA species. Most brains are appropriate for morphological approaches but not all brains are useful for certain biochemical and molecular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Akbarian S, Ruehl MG, Bliven E, Luiz LA, Peranelli AC, Baker SP et al (2005) Chromatin alterations associated with down-regulated metabolic gene expression in the prefrontal cortex of subjects with schizophrenia. Arch Gen Psychiatry 62:829–840. doi:10.1001/archpsyc.62.8.829

    PubMed  CAS  Google Scholar 

  • Albasanz JL, Dalfó E, Ferrer I, Martín M (2005) Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s disease-related changes. Neurobiol Dis 20:685–693. doi:10.1016/j.nbd.2005.05.001

    PubMed  CAS  Google Scholar 

  • Albasanz JL, Rodriguez A, Ferrer I, Martin M (2006) Adenosine A2A receptors are up-regulated in Pick’s disease frontal cortex. Brain Pathol 16:249–255. doi:10.1111/j.1750-3639.2006.00026.x

    PubMed  CAS  Google Scholar 

  • Arai T, Guo J, McGeer P (2005) Proteolysis of non-phosphorylated and phosphorylated tau by thrombin. J Biol Chem 280:5145–5153. doi:10.1074/jbc.M409234200

    PubMed  CAS  Google Scholar 

  • Barrachina M, Castaño E, Ferrer I (2006) TaqMan PCR assay in the control of RNA normalization in human post-mortem brain tissue. Neurochem Int 49:276–284. doi:10.1016/j.neuint.2006.01.018

    PubMed  CAS  Google Scholar 

  • Bazinet RP, Lee HJ, Felder CC, Porter AC, Rapoport SI, Rosenberger TA (2005) Rapid high-energy microwave fixation is required to determine the anandamine (N-arachidonoylethanolamine) concentration of rat brain. Neurochem Res 30:597–601. doi:10.1007/s11064-005-2746-5

    PubMed  CAS  Google Scholar 

  • Bell JE, Alafuzoff I, Al-Sarraj S, Arzberger T, Bogdanovic N, Budka H, Dexter DT, Falkai P, Ferrer I, Gelpi E, Gentleman SM, Giaconne G, Huitinga I, Ironside JW, Klioueva N, Kovacs GG, Meyronet D, Palkovits M, Parchi P, Patsouris E, Reynols R, Riederer P, Roggendorf W, Seilhean D, Schmitt A, Schmitz P, Streichenberger N, Schwakber A, Kretzschmar H (2008) Management of a 21st century brain bank: experience in the BrainNet Europe Consortium. Acta Neuropathol 115:497–507

    PubMed  Google Scholar 

  • Bird ED, Vonsattel JP (1993) The development of a brain bank. J Neural Transm 39:17–23

    CAS  Google Scholar 

  • Boutillier S, Lannes B, Buée L, DElacourte A, Rouaux C, Mohr M, Bellocq JP, Sellal F, Larmet Y, Boutillier AL, Loeffler JP (2007) Sp3 and Sp4 transcription factor levels are increased in brains of patients with Alzheimer’s disease. Neurodegener Dis 4:413–423. doi:10.1159/000107701

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1999) Temporal sequence of Alzheimer’s disease-related pathology. In: Peters A, Morrison JH (eds) Cerebral cortex, vol 14: neurodegenerative and age-related changes in structure and function of cerebral cortex. Kluwer Academic/Plenum Press, New York, pp 475–512

    Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. doi:10.1016/S0197-4580(02)00065-9

    PubMed  Google Scholar 

  • Buesa C, Maes T, Subirada F, Barrachina M, Ferrer I (2004) DNA chip technology in brain banks: confronting a degrading world. J Neuropathol Exp Neurol 63:1003–1014

    PubMed  CAS  Google Scholar 

  • Burmistrova OA, Golstov AY, Abramova LI, Kaleda VG, Orlova VA, Rogaev EI (2007) MicroRNA in schizophrenia: genetic and expression analysis of miR-130b (22q11). Biochemistry 72:578–582

    PubMed  CAS  Google Scholar 

  • Butterfield DA, Poon HF, Clair D, Keller JN, Pierce WM, Klein JB et al (2006) Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol Dis 22:223–232. doi:10.1016/j.nbd.2005.11.002

    PubMed  CAS  Google Scholar 

  • Calacal GC, Delfin FC, Tan MM, Roewer L, Magtanong DL, Lara MC et al (2005) Identification of exhumed remains of fire tragedy victims using conventional methods and autosomal/Y-chromosomal short tandem repeat DNA profiling. Am J Forensic Med Pathol 26:285–291. doi:10.1097/01.paf.0000177338.21951.82

    PubMed  Google Scholar 

  • Cavallaro RA, Fuso A, D’Anselmi F, Seminara L, Scarpa S (2006) The effect of S-adenosylmethionine on CNS gene expression studied by cDNA microarray analysis. J Alzheimers Dis 9:415–419

    PubMed  Google Scholar 

  • Choi J, Rees HD, Weintraub ST, Levey AI, Chin LS, Li L (2005) Oxidative modifications and aggregation of Cu, Zn-superoxide dismutase associated with Alzheimer and Parkinson diseases. J Biol Chem 280:11648–11655. doi:10.1074/jbc.M414327200

    PubMed  CAS  Google Scholar 

  • Compaine A, Schein JD, Tabbs JS, Mohan PS, Nixon RA (1995) Limited proteolytic processing of the mature form of cathepsin D in human and mouse brain: postmortem stability of enzyme structure and activity. Neurochem Int 27:385–396. doi:10.1016/0197-0186(95)00020-9

    PubMed  CAS  Google Scholar 

  • Coura R, Prolla JC, Meurer L, Ashton-Prolla P (2005) An alternative protocol for DNA extraction from formalin fixed and paraffin wax embedded tissue. J Clin Pathol 58:894–895. doi:10.1136/jcp. 2004.021352

    PubMed  CAS  Google Scholar 

  • Crecelius A, Götz A, Arzberger T, Fröhlich T, Arnold GJ, Ferrer I et al (2008) Assessing quantitative post-mortem changes in the grey white matter of the human frontal cortex proteome by 2D-DIGE. Proteomics 8:1276–1291. doi:10.1002/pmic.200700728

    PubMed  CAS  Google Scholar 

  • Cummings TJ, Strum JC, Yoon LW, Szymanski MH, Hulette CM (2001) Recovery and expression of messenger RNA from post-mortem human brain tissue. Mod Pathol 14:1157–1161. doi:10.1038/modpathol.3880451

    PubMed  CAS  Google Scholar 

  • Dalfó E, Ferrer I (2005) Alpha-synuclein binding to rab-3a in multiple system atrophy. Neurosci Lett 380:170–175. doi:10.1016/j.neulet.2005.01.034

    PubMed  Google Scholar 

  • Dalfó E, Albasanz JL, Martín M, Ferrer I (2004a) Abnormal metabotropic glutamate receptor expression and signaling in the cerebral cortex in Diffuse Lewy body disease is associated with irregular alpha-synuclein/phospholipase C interactions. Brain Pathol 14:388–398

    PubMed  Google Scholar 

  • Dalfó E, Barrachina M, Rosa JL, Ambrosio S, Ferrer I (2004b) Abnormal alpha-synuclein interactions with rab3a and rabphilin in diffuse Lewy body disease. Neurobiol Dis 16:92–97. doi:10.1016/j.nbd.2004.01.001

    PubMed  Google Scholar 

  • Dalfó E, Gómez-Isla T, Rosa JL, Nieto Bodelón M, Cuadrado Tejedor M, Barrachina M et al (2004c) Abnormal alpha-synuclein interactions with Rab proteins in alpha-synuclein A30P transgenic mice. J Neuropathol Exp Neurol 63:302–313

    PubMed  Google Scholar 

  • Dalfó E, Albasanz JL, Rodríguez A, Martín M, Ferrer I (2005) Abnormal group I metabotropic glutamate receptor expression and signaling in the frontal cortex in Pick disease. J Neuropathol Exp Neurol 64:638–647

    PubMed  Google Scholar 

  • Daniel SE, Lees AJ (1993) Parkinson’s Disease Society Brain Bank, London: overview and research. J Neural Transm 39:165–172

    CAS  Google Scholar 

  • Diaz-Hernandez M, Hernadez F, Martin-Aparicio E, Gomez-Ramos P, Moran MA, Castaño JG et al (2003) Neuronal induction of the immunoproteasome in Huntington’s disease. J Neurosci 23:11653–11661

    PubMed  CAS  Google Scholar 

  • Ervin JF, Heinzen EL, Cronin KD, Goldstein D, Szymanski MH, Bohmer KA et al (2007) Postmortem delay has minimal effect on brain RNA integrity. J Neuropathol Exp Neurol 66:1093–1099. doi:10.1097/nen.0b013e31815c196a

    PubMed  CAS  Google Scholar 

  • Esiri MM (1993) Brain banks: the Oxford experience. J Neural Transm 39:25–30

    CAS  Google Scholar 

  • Faraco G, Pancani T, Formentini L, Mascagni P, Fossati G, Leoni F et al (2006) Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol Pharmacol 70:1876–1884. doi:10.1124/mol.106.027912

    PubMed  CAS  Google Scholar 

  • Ferrer I, Blanco R, Carmona M, Ribera R, Goutan E, Puig B et al (2001) Phosphorylated MAP kinase (ERK1, ERK2) expression is associated with early tau deposition in neurones and glial cells, but not with increased nuclear DNA vulnerability and cell death, in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Brain Pathol 11:144–158

    PubMed  CAS  Google Scholar 

  • Ferrer I, Gómez-Isla T, Puig B, Freixes M, Ribé E, Dalfó E et al (2005) Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimer Res 2:3–18. doi:10.2174/1567205052772713

    PubMed  CAS  Google Scholar 

  • Ferrer I, Armstrong J, Capellari S, Parchi P, Arzberger T, Bell J et al (2007a) Effects of formalin fixation, paraffin embedding, and time of storage on DNA preservation in brain tissue: a BrainNet Europe study. Brain Pathol 17:297–303. doi:10.1111/j.1750-3639.2007.00073.x

    PubMed  CAS  Google Scholar 

  • Ferrer I, Santpere G, Arzberger T, Bell J, Blanco R, Boluda S et al (2007b) Brain protein preservation largely depends on the postmortem storage temperature: implications for study of proteins in human neurologic diseases and management of brain banks: a BrainNet Europe Study. J Neuropathol Exp Neurol 66:35–46

    PubMed  CAS  Google Scholar 

  • Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S (2005) S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 28:195–204. doi:10.1016/j.mcn.2004.09.007

    PubMed  CAS  Google Scholar 

  • Gamblin TC, Chen F, Abraha A, Miller R, Fu Y, Garcia-Sierra F et al (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100:10032–10037. doi:10.1073/pnas.1630428100

    PubMed  CAS  Google Scholar 

  • García-Sierra F, Ghoshal N, Quinn B, Berry R, Binder LI (2003) Conformational changes and truncation of tau protein during tangle evolution in Alzheimer’s disease. J Alzheimers Dis 5:65–77

    PubMed  Google Scholar 

  • Garro MA, López de Jesús M, Ruiz de Azua I, Callado LF, Meana JJ, Salles J (2004) Differential postmortem delay effect on agonist-mediated phospholipase Cβ activity in human cortical crude and synaptosomal brain membranes. Neurochem Res 29:1461–1465. doi:10.1023/B:NERE.0000026412.66508.14

    PubMed  CAS  Google Scholar 

  • Hansen T, Olsen L, Lindow M, Jakobsen KD, Ullum H, Jonsson E et al (2007) Brain expressed microRNAs implicated in schizophrenia etiology. PLoS ONE 9:1–7

    Google Scholar 

  • Haroutunian V, Davis KL (2002) Issues and perspectives on brain tissue banking. Curr Psychiatry Rep 4:233–244. doi:10.1007/s11920-996-0039-6

    PubMed  Google Scholar 

  • Harrison PJ, Heath PR, Eastwood SL, Burnet PW, McDonald B, Pearson RC (1995) The relative importance of pre-mortem acidosis and post-mortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci Lett 200:151–154. doi:10.1016/0304-3940(95)12102-A

    PubMed  CAS  Google Scholar 

  • Hébert SS, De Strooper B (2007) Molecular biology miRNAs in neurodegeneration. Science 317:1179–1180. doi:10.1126/science.1148530

    PubMed  Google Scholar 

  • Hilbig H, Bidmon HJ, Oppermann OT, Remmerbach T (2004) Influence of post-mortem delay and storage temperature on the immunohistochemical detection of antigens in the CNS of mice. Exp Toxicol Pathol 56:159–171. doi:10.1016/j.etp. 2004.08.002

    PubMed  Google Scholar 

  • Huang HS, Matevossian A, Jiang Y, Akbarian S (2006) Chromatin immunoprecipitation in postmortem brain. J Neurosci Methods 156:284–292. doi:10.1016/j.jneumeth.2006.02.018

    PubMed  CAS  Google Scholar 

  • Hulette CM (2003) Brain banking in the United States. J Neuropathol Exp Neurol 62:715–722

    PubMed  Google Scholar 

  • Hulette CM, Welsh-Bohmer KA, Crain B, Szymanski MH, Sinclaire NO, Roses AD (1997) Rapid brain autopsy. The Joseph and Kathleen Bryan Alzheimer’s Disease Research Center experience. Arch Pathol Lab Med 121:615–618

    PubMed  CAS  Google Scholar 

  • Ilieva EV, Ayala V, Jove M, Dalfó E, Cacabelos D, Povedano M et al (2007) Oxidative and endoplasmic reticulum stress interplay in sporadic amyotrophic lateral sclerosis. Brain 130:3111–3123. doi:10.1093/brain/awm190

    PubMed  Google Scholar 

  • Irving EA, McCulloch J, Dewar D (1997) The effect of postmortem delay on the distribution of microtubule-associated proteins tau, MAP2, and MAP5 in the rat. Mol Chem Neuropathol 30:253–271. doi:10.1007/BF02815102

    PubMed  CAS  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison Hannon G et al (2007) A microRNA feedback circuit in midbrain dopamine neurons. Science 317:1179–1180. doi:10.1126/science.1148530

    Google Scholar 

  • Kline MC, Duewer DL, Redman JW, Butler JM (2005) Results from the NIST 2004 DNA quantitation study. J Forensic Sci 50:570–578

    PubMed  Google Scholar 

  • Konomi N, Lebwohl E, Zhang D (2002) Comparison of DNA and RNA extraction methods for mummified tissues. Mol Cell Probes 16:445–451. doi:10.1006/mcpr.2002.0441

    PubMed  CAS  Google Scholar 

  • Koppelstaetter C, Jennings P, Hochegger K, Perco P, Ischia R, Karkoszka H et al (2005) Effect of tissue fixatives on telomere length determination by qualitative PCR. Mech Ageing Dev 126:1331–1333. doi:10.1016/j.mad.2005.08.003

    PubMed  CAS  Google Scholar 

  • Korolainen MA, Goldsteins G, Nyman TA, Alafuzoff I, Koistinaho J, Pirttilä T (2006) Oxidative modification of proteins in the frontal cortex of Alzheimer’s disease brain. Neurobiol Aging 27:42–53. doi:10.1016/j.neurobiolaging.2004.11.010

    PubMed  CAS  Google Scholar 

  • Kovács Z, Kékesi KT, Bobest M, Török T, Szilágyi N, Szidra T et al (2005) Post mortem degradation of nucleosides in the brain: comparison of human and rat brains for estimation of in vivo concentrations of nucleosides. J Neurosci Methods 148:88–93. doi:10.1016/j.jneumeth.2005.04.012

    PubMed  Google Scholar 

  • Krajick K (2002) Glacial research melting glaciers release ancient relics. Science 296:2142. doi:10.1126/science.296.5567.454

    Google Scholar 

  • Kunkle RA, Miller JM, Alt DP, Cutlip RC, Cockett NE, Wang S et al (2006) Determination of sheep prion gene polymorphisms from paraffin-embedded tissues. J Vet Diagn Invest 18:443–447

    PubMed  Google Scholar 

  • Ladd-Acosta C, Pevsner J, Sabunciyan S, Yolken RH, Webster MJ, Dinkins T et al (2007) DNA methylation signatures within the human brain. Am J Hum Genet 81:1304–1315. doi:10.1086/524110

    PubMed  CAS  Google Scholar 

  • Leonard S, Logel J, Luthman D, Casanova M, Kirch D, Freedman R (1993) Biological stability of mRNA isolated from human post-mortem brain collections. Biol Psychiatry 33:456–466. doi:10.1016/0006-3223(93)90174-C

    PubMed  CAS  Google Scholar 

  • Li X, Greenwood AF, Powers R, Jope RS (1996) Effects of postmortem interval, age, and Alzheimer’s disease on G-proteins in human brain. Neurobiol Aging 17:115–122. doi:10.1016/0197-4580(95)02023-3

    PubMed  CAS  Google Scholar 

  • Li JZ, Vawter MP, Walsh DM, Tomita H, Evans SJ, Choudary PV et al (2004) Systematic changes in gene expression in post-mortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 13:609–616. doi:10.1093/hmg/ddh065

    PubMed  CAS  Google Scholar 

  • Liu X, Brun A (1995) Synaptophysin immunoreactivity is stable 36 h postmortem. Dementia 6:211–217. doi:10.1159/000106949

    PubMed  CAS  Google Scholar 

  • Luciani S, Fornaciari G, Rickards O, Labarga CM, Rollo F (2006) Molecular characterization of a pre-Columbian mummy and in situ coprolite. Am J Phys Anthropol 129:620–629. doi:10.1002/ajpa.20314

    PubMed  Google Scholar 

  • Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease. Neuroreport 18:297–300. doi:10.1097/WNR.0b013e3280148e8b

    PubMed  CAS  Google Scholar 

  • Ma JK, Zhu HE, Piletz JE (2003) Effect of postmortem delay on imidazoline receptor-binding proteins in human and mouse brain. Ann N Y Acad Sci 1009:341–346. doi:10.1196/annals.1304.043

    PubMed  CAS  Google Scholar 

  • Marota I, Rollo F (2002) Molecular paleontology. Cell Mol Life Sci 59:97–111. doi:10.1007/s00018-002-8408-8

    PubMed  CAS  Google Scholar 

  • Medhurst AD, Harrison DC, Read SJ, Campbell CA, Robbins MJ, Pangalos MN (2000) The use of TaqMan RT-PCR assays for semiquantitative analysis of gene expression in CNS tissues and disease models. J Neurosci Methods 98:9–20. doi:10.1016/S0165-0270(00)00178-3

    PubMed  CAS  Google Scholar 

  • Michel TM, Frangou S, Thiemeyer D, Camara S, Jecel J, Nara K et al (2007) Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder-a postmortem study. Psychiatry Res 151:145–150. doi:10.1016/j.psychres.2006.04.013

    PubMed  CAS  Google Scholar 

  • Miething F, Hering S, Hanschke B, Dressler J (2006) Effect of fixation for the degradation of nuclear and mitochondrial DNA in different tissues. J Histochem Cytochem 54:371–374. doi:10.1369/jhc.5B6726.2005

    PubMed  CAS  Google Scholar 

  • Miller CL, Diglisic S, Leister F, Webster M, Yolken RH (2004) Evaluating RNA status for RT-PCR in extracts of post-mortem human brain tissue. Biotechniques 36:628–633

    PubMed  CAS  Google Scholar 

  • Morgello S, Gelman BB, Kozlowski PB, Vinters HV, Masliah E, Cornford M et al (2001) The national NeuroAIDS tissue consortium. Neuropathol Appl Neurobiol 27:326–335. doi:10.1046/j.0305-1846.2001.00334.x

    PubMed  CAS  Google Scholar 

  • Murphy DD, Ravina B (2003) Brain banking for neurodegenerative diseases. Curr Opin Neurol 16:459–463. doi:10.1097/00019052-200308000-00003

    PubMed  Google Scholar 

  • Nagatsu T, Sawada M (2007) Biochemistry of post-mortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm 72:113–120

    CAS  Google Scholar 

  • Nelson PT, Keller JN (2007) RNA in brain disease: no longer just “the messenger in the middle”. J Neuropathol Exp Neurol 66:461–468. doi:10.1097/01.jnen.0000240474.27791.f3

    PubMed  CAS  Google Scholar 

  • Newcombe J, Cuzner ML (1993) Organization and research applications of the UK Multiple Sclerosis Society Tissue Bank. J Neural Transm 39:155–163

    CAS  Google Scholar 

  • Niwa S (2002) Establishment of the systematic Brain Bank Network for studies of mental disorders. Seishin Shinkeigaku Zasshi 104:152–157

    PubMed  Google Scholar 

  • Nunomura A, Castrellani RJ, Zhu X, Moreira PI, Perry G, Smith MA (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 65:631–641. doi:10.1097/01.jnen.0000228136.58062.bf

    PubMed  CAS  Google Scholar 

  • Paabo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N et al (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679. doi:10.1146/annurev.genet.37.110801.143214

    PubMed  Google Scholar 

  • Panaro NJ, Yuen PK, Sakazume T, Fortina P, Kricka LJ, Wilding P (2000) Evaluation of DNA fragment sizing and quantification by the agilent 2100 bioanalyzer. Clin Chem 46:1851–1853

    PubMed  CAS  Google Scholar 

  • Pedraza CE, Podlesniy P, Vidal N, Arévalo JC, Lee R, Hempstead B et al (2005) Pro-NGF isolated from the human brain affected by Alzheimer’s disease induces neuronal apoptosis mediated by p75NTR. Am J Pathol 166:533–543

    PubMed  CAS  Google Scholar 

  • Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA et al (2007) microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorders. Genome Biol 8(R27):1–11. doi:10.1186/gb-2007-8-2-r27

    Google Scholar 

  • Podlesniy P, Kichev A, Pedraza C, Saurat J, Encinas M, Perez B et al (2006) Pro-NGF from Alzheimer’s disease and normal human brain displays distinctive abilities to induce processing and nuclear translocation of intracellular domain of p75NTR and apoptosis. Am J Pathol 169:119–131. doi:10.2353/ajpath.2006.050787

    PubMed  CAS  Google Scholar 

  • Preece P, Cairns NJ (2003) Quantifying mRNA in post-mortem human brain: influence of gender, age at death, post-mortem interval, brain pH, agonal state and inter-lobe mRNA variance. Brain Res Mol Brain Res 118:60–71. doi:10.1016/S0169-328X(03)00337-1

    PubMed  CAS  Google Scholar 

  • Puig B, Viñals F, Ferrer I (2004) Active stress kinase p38 enhances and perpetuates abnormal tau phosphorylation and deposition in Pick’s disease. Acta Neuropathol 107:185–189. doi:10.1007/s00401-003-0793-z

    PubMed  CAS  Google Scholar 

  • Ravid R (2008) Standard operating procedures, ethical and legal regulations in BTB (Brain/Tissue/Bio) banking: what is still missing? Cell Tissue Bank 9(2):121–137

    PubMed  Google Scholar 

  • Ren M, Jeong M, Leeds PR, Chuang DM (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 89:1358–1367. doi:10.1111/j.1471-4159.2004.02406.x

    PubMed  CAS  Google Scholar 

  • Rivero ER, Neves AC, Siklva-Valenzuela MG, Sousa SO, Nunes FD (2006) Simple salting-out method for DNA extraction from formalin-fixed, paraffin-embedded tissues. Pathol Res Pract 202:523–529. doi:10.1016/j.prp. 2006.02.007

    PubMed  CAS  Google Scholar 

  • Rodríguez A, Martin M, Albasanz JL, Barrachina M, Espinosa JC, Torres JM et al (2006) Adenosine A1 receptor protein levels and activity is increased in the cerebral cortex in Creutzfeldt-Jakob disease and in Bovine spongiform encephalopathy-infected bovine-PrP mice. J Neuropathol Exp Neurol 65:964–975

    PubMed  Google Scholar 

  • Rogaev EI (2005) Small RNAs in human brain development and disorders. Biochemistry 70:1404–1407

    PubMed  CAS  Google Scholar 

  • Rogaev EI, Lukiw WJ, Lavrushina O, Rogaeva EA, George-Hyslop PH (1994) The upstream promoter of the beta-amyloid precursor protein gene (APP) shows differential patterns of methylation in human brain. Genomics 22:340–347. doi:10.1006/geno.1994.1393

    PubMed  CAS  Google Scholar 

  • Rollo F, Ermini L, Luciani S, Marota I, Olivieri C, Luiselli D (2006) Fine characterization of the Iceman’s mtDNA haplogroup. Am J Phys Anthropol 130:557–564. doi:10.1002/ajpa.20384

    PubMed  Google Scholar 

  • Ross BM, Knowler JT, McCulloch J (1992) On the stability of messenger RNA and ribosomal RNA in the brains of control human subjects and patients with Alzheimer’s disease. J Neurochem 58:1810–1819. doi:10.1111/j.1471-4159.1992.tb10057.x

    PubMed  CAS  Google Scholar 

  • Santpere G, Puig B, Ferrer I (2006) Low molecular weight species of tau in Alzheimer’s disease are dependent on tau phosphorylation sites but not on delayed post-mortem delay in tissue processing. Neurosci Lett 399:106–110. doi:10.1016/j.neulet.2006.01.036

    PubMed  CAS  Google Scholar 

  • Sarris M, Garrick TM, Sheedy D, Harper CG (2002) Banking for the future: an Australian experience in brain banking. Pathology 34:225–229. doi:10.1080/00313020220131260

    PubMed  CAS  Google Scholar 

  • Scarpa S, Cavallaro RA, D’Anselmi F, Fuso A (2006) Gene silencing through methylation: an epigenetic intervention on Alzheimer disease. J Alzheimers Dis 9:407–414

    PubMed  CAS  Google Scholar 

  • Schmidt A, Bauer M, Heinsen H, Feiden W, Falkai P, Alafuzoff I et al (2007) How a neuropsychiatric brain bank should be run: a consensus paper of Brainnet Europe II. J Neural Transm 114:527–537. doi:10.1007/s00702-006-0601-8

    Google Scholar 

  • Schwab C, Bondada V, Sparks DL, Cahan LD, Geddes JW (1994) Postmortem changes in the levels and localization of microtubule-associated proteins (tau, MAP2 and MAP1B) in the rat and human hippocampus. Hippocampus 4:210–225. doi:10.1002/hipo.450040212

    PubMed  CAS  Google Scholar 

  • Siew LK, Love S, Dawbarn D, Wilcock GK, Allen SJ (2004) Measurement of pre- and post-synaptic proteins in cerebral cortex: effects of post-mortem delay. J Neurosci Methods 139:153–159. doi:10.1016/j.jneumeth.2004.04.020

    PubMed  CAS  Google Scholar 

  • Sorimachi Y, Harada K, Yoshida K (1996) Involvement of calpain in postmortem proteolysis in the rat brain. Forensic Sci Int 81:165–174. doi:10.1016/S0379-0738(96)01981-0

    PubMed  CAS  Google Scholar 

  • Stadler F, Kolb G, Rubusch L, Baker SP, Jones EG, Akbarian S (2005) Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain. J Neurochem 94:324–336. doi:10.1111/j.1471-4159.2005.03190.x

    PubMed  CAS  Google Scholar 

  • Stanta G, Mucelli SP, Petrera F, Bonin S, Bussolati G (2006) A novel fixative improves opportunities of nucleic acids and proteomic analysis in human archive’s tissues. Diagn Mol Pathol 15:115–123. doi:10.1097/00019606-200606000-00009

    PubMed  CAS  Google Scholar 

  • Steidl JV, Gómez-Isla T, Mariash A, Ashe KH, Boland LM (2003) Altered short-term hippocampal plasticity in mutant synuclein transgenic mice. Neuroreport 14:219–223. doi:10.1097/00001756-200302100-00012

    PubMed  Google Scholar 

  • Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB, Stupak DP et al (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. J Neural Transm 60:77–100

    Google Scholar 

  • Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M (1999a) Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70:288–292. doi:10.1016/S0169-328X(99)00163-1

    PubMed  CAS  Google Scholar 

  • Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y (1999b) The methylation status of cytosines in a tau gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett 275:89–92. doi:10.1016/S0304-3940(99)00731-4

    PubMed  CAS  Google Scholar 

  • Tomita H, Vawter MP, Walsh DM, Evans SJ, Choudary PV, Li J et al (2004) Effect of agonal and post-mortem factors on gene expression profile: quality control in microarray analyses of post-mortem human brain. Biol Psychiatry 55:346–352. doi:10.1016/j.biopsych.2003.10.013

    PubMed  CAS  Google Scholar 

  • Tourtellotte WW, Rosario IP, Conrad A, Syndulko K (1993) Human neuro-specimen banking 1961–1992. The National Neurological Research Specimen Bank (a donor program of pre- and post-mortem tissues and cerebrospinal fluid/blood; and a collection of cryopreserved human neurological specimens for neuroscientists). J Neural Transm 39:5–15

    CAS  Google Scholar 

  • Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M et al (2002) Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 309:293–300. doi:10.1016/S0003-2697(02)00311-1

    PubMed  CAS  Google Scholar 

  • Webster MJ (2006) Tissue preparation and banking. Prog Brain Res 158:3–14. doi:10.1016/S0079-6123(06)58001-X

    Article  PubMed  CAS  Google Scholar 

  • West RL, Lee JM, Maroun LE (1995) Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J Mol Neurosci 6:141–146. doi:10.1007/BF02736773

    PubMed  CAS  Google Scholar 

  • Witchell J, Varshney D, Gajjar T, Wangoo A, Goyal M (2008) RNA isolation and quantitative PCR from HOPE- and formalin-fixed bovine lymph node tissues. Pathol Res Pract 204(2):105–111

    PubMed  CAS  Google Scholar 

  • Wu KH, Penfold PL, Billson FA (2002) Effects of post-mortem delay and storage duration on the expression of GFAP in normal human adult retinae. Clin Exp Ophthalmol 309:200–207. doi:10.1046/j.1442-9071.2002.00515.x

    Google Scholar 

  • Yasojima K, McGeer EG, McGeer PL (2001) High stability of mRNAs post-mortem and protocols for their assessment by RT-PCR. Brain Res Prot 8:212–218. doi:10.1016/S1385-299X(01)00119-2

    CAS  Google Scholar 

  • Yates CM, Butterworth J, Tennant MC, Gordon A (1990) Enzyme activities in relation to pH and lactate in post-mortem brain in Alzheimer-type and other dementias. J Neurochem 55:1624–1630. doi:10.1111/j.1471-4159.1990.tb04948.x

    PubMed  CAS  Google Scholar 

  • Zhao TC, Cheng G, Zhang LX, Tseng YT, Padbury JF (2007) Inhibition of histone deacetylases triggers pharmacologic preconditioning effects against myocardial ischemic injury. Cardiovasc Res 76:473–481. doi:10.1016/j.cardiores.2007.08.010

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission under the Sixth Framework Programme (BrainNet Europe II, LSHM-CT-2004-503039; and INDABIP). We thank T. Yohannan for editorial help. Brain samples were obtained from the Institute of Neuropathology and Brain Bank following the guidelines and approval of the local ethics committees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidre Ferrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrer, I., Martinez, A., Boluda, S. et al. Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies. Cell Tissue Banking 9, 181–194 (2008). https://doi.org/10.1007/s10561-008-9077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-008-9077-0

Keywords

Navigation