Skip to main content

Advertisement

Log in

Mechanisms of invasion and metastasis in human neuroblastoma

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Neuroblastoma is the second most common solid tumor in children that is metastatic in 70% of patients at the time of diagnosis. The ability of neuroblastoma cells to colonize distant organs like the bone marrow and the bone is the result of close interactions between tumor cells and the microenvironment. Significant progress has been recently made in our understanding of the mechanisms that promote the colonization and invasion of the bone by neuroblastoma cells and these mechanisms are reviewed in this article. How this understanding is now allowing us to test new therapeutic agents specifically targeted at interfering with neuroblastoma metastasis is then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Matthay, K. K., & Tamashiro, D. J. (2002). Neuroblastoma. In R. C. Bast, Jr., D. W. Kufe, R. E. Pollock, Weichselbaum, J. F. Holland, E. Frei, et al. (Eds.), Holland Frei cancer medicine (pp. 2185–2197). Hamilton, Ontario: B.C. Decker.

    Google Scholar 

  2. Castleberry, R. P. (1997). Neuroblastoma. European Journal of Cancer, 33, 1430–1437.

    PubMed  CAS  Google Scholar 

  3. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.

    PubMed  CAS  Google Scholar 

  4. Minn, A. J., Kang, Y., Serganova, I., Gupta, G. P., Giri, D. D., Doubrovin M., et al. (2005). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. Journal of Clinical Investigation, 115, 44–55.

    PubMed  CAS  Google Scholar 

  5. Roodman, G. D. (2004). Mechanisms of bone metastasis. New England Journal of Medicine, 350, 1655–1664.

    PubMed  CAS  Google Scholar 

  6. Dubois, S. G., Kalika, Y., Lukens, J. N., Brodeur, G. M., Seeger, R. C., Atkinson, J. B., et al. (1999). Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. Journal of Pediatric Hematology/Oncology, 21, 181–189.

    PubMed  CAS  Google Scholar 

  7. Brodeur, G. M. (2003). Neuroblastoma: Biological insights into a clinical enigma. Nature Reviews. Cancer, 3, 203–216.

    PubMed  CAS  Google Scholar 

  8. McArdle, L., McDermott, M., Purcell, R., Grehan, D., O’Meara, A., Breatnach, et al. (2004). Oligonucleotide microarray analysis of gene expression in neuroblastoma displaying loss of chromosome 11q. Carcinogenesis, 25, 1599–1609.

    PubMed  CAS  Google Scholar 

  9. Morowitz, M., Shusterman, S., Mosse, Y., Hii, G., Winter, C. L., Khazi, D., et al. (2003). Detection of single-copy chromosome 17q gain in human neuroblastomas using real-time quantitative polymerase chain reaction. Modern Pathology, 16, 1248–1256.

    PubMed  Google Scholar 

  10. Lenardo, M., Rustgi, A. K., Schievella, A. R., & Bernards, R. (1989). Suppression of MHC class I gene expression by N-myc through enhancer inactivation. EMBO Journal, 8, 3351–3355.

    PubMed  CAS  Google Scholar 

  11. ’t Veer, L. J., Beijersbergen, R. L., & Bernards, R. (1993). N-myc suppresses major histocompatibility complex class I gene expression through down-regulation of the p50 subunit of NF-kappa B. EMBO Journal, 12, 195–200.

    PubMed  Google Scholar 

  12. Garcia-Lora, A., Algarra, I., & Garrido, F. (2003). MHC class I antigens, immune surveillance, and tumor immune escape. Journal of Cellular Physiology, 195, 346–355.

    PubMed  CAS  Google Scholar 

  13. Bernards, R. (1991). N-myc disrupts protein kinase C-mediated signal transduction in neuroblastoma. EMBO Journal, 10, 1119–1125.

    PubMed  CAS  Google Scholar 

  14. Akeson, R., & Bernards, R. (1990). N-myc down regulates neural cell adhesion molecule expression in rat neuroblastoma. Molecular and Cellular Biology, 10, 2012–2016.

    PubMed  CAS  Google Scholar 

  15. Soo, K., O’Rourke, M. P., Khoo, P. L., Steiner, K. A., Wong, N., Behringer, R. R., et al. (2002). Twist function is required for the morphogenesis of the cephalic neural tube and the differentiation of the cranial neural crest cells in the mouse embryo. Developments in Biologicals, 247, 251–270.

    Article  CAS  Google Scholar 

  16. Yang, J., Mani, S. A., & Weinberg, R. A. (2006). Exploring a new twist on tumor metastasis. Cancer Research, 66, 4549–4552.

    PubMed  CAS  Google Scholar 

  17. Valsesia-Wittmann, S., Magdeleine, M., Dupasquier, S., Garin, E., Jallas, A. C., Combaret, V., et al. (2004). Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell, 6, 625–630.

    PubMed  CAS  Google Scholar 

  18. Puisieux, A., Valsesia-Wittmann, S., & Ansieau, S. (2006). A twist for survival and cancer progression. British Journal of Cancer, 94, 13–17.

    PubMed  CAS  Google Scholar 

  19. Maestro, R., Dei Tos, A. P., Hamamori, Y., Krasnokutsky, S., Sartorelli, V., Kedes, L., et al. (1999). Twist is a potential oncogene that inhibits apoptosis. Genes & Development, 13, 2207–2217.

    CAS  Google Scholar 

  20. Valentijn, L. J., Koppen, A., van Asperen, R., Root, H. A., Haneveld, F., & Versteeg, R. (2005). Inhibition of a new differentiation pathway in neuroblastoma by copy number defects of N-myc, Cdc42, and nm23 genes. Cancer Research, 65, 3136–3145.

    PubMed  CAS  Google Scholar 

  21. Islam, A., Kageyama, H., Takada, N., Kawamoto, T., Takayasu, H., Isogai, E., et al. (2000). High expression of Survivin, mapped to 17q25, is significantly associated with poor prognostic factors and promotes cell survival in human neuroblastoma. Oncogene, 19, 617–623.

    PubMed  CAS  Google Scholar 

  22. Teitz, T., Lahti, J. M., & Kidd, V. J. (2001). Aggressive childhood neuroblastomas do not express caspase-8: An important component of programmed cell death. Journal of Molecular Medicine, 79, 428–436.

    PubMed  CAS  Google Scholar 

  23. Hecht, M., Schulte, J. H., Eggert, A., Wilting, J., & Schweigerer L. (2005). The neurotrophin receptor TrkB cooperates with c-Met in enhancing neuroblastoma invasiveness. Carcinogenesis, 26, 2105–2115.

    PubMed  CAS  Google Scholar 

  24. Wyckoff, J. B., Jones, J. G., Condeelis, J. S., & Segall, J. E. (2000). A critical step in metastasis: In vivo analysis of intravasation at the primary tumor. Cancer Research, 60, 2504–2511.

    PubMed  CAS  Google Scholar 

  25. Macaluso, M., Paggi, M. G., & Giordano, A. (2003). Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene, 22, 6472–6478.

    PubMed  CAS  Google Scholar 

  26. Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular Cell Biology, 5, 816–826.

    PubMed  CAS  Google Scholar 

  27. Tlsty, T. D., Crawford, Y. G., Holst, C. R., Fordyce, C. A., Zhang, J., McDermott, K., Kozakiewicz, K., & Gauthier, M. L. (2004). Genetic and epigenetic changes in mammary epithelial cells may mimic early events in carcinogenesis. Journal of Mammary Gland Biology and Neoplasia, 9, 263–274.

    PubMed  Google Scholar 

  28. Geho, D. H., Bandle, R. W., Clair, T., & Liotta, L. A. (2005). Physiological mechanisms of tumor-cell invasion and migration. Physiology (Bethesda), 20, 194–200.

    CAS  Google Scholar 

  29. Omura-Minamisawa, M., Diccianni, M. B., Chang, R. C., Batova, A., Bridgeman, L. J., Schiff, J., et al. (2001). p16/p14(ARF) cell cycle regulatory pathways in primary neuroblastoma: p16 expression is associated with advanced stage disease. Clinical Cancer Research, 7, 3481–3490.

    PubMed  CAS  Google Scholar 

  30. Agathanggelou, A., Bieche, I., Ahmed-Choudhury, J., Nicke, B., Dammann, R., Baksh, S., Gao, B., et al. (2003). Identification of novel gene expression targets for the Ras association domain family 1 (RASSF1A) tumor suppressor gene in non-small cell lung cancer and neuroblastoma. Cancer Research, 63, 5344–5351.

    PubMed  CAS  Google Scholar 

  31. Yang, Q., Zage, P., Kagan, D., Tian, Y., Seshadri, R., Salwen, H. R., et al. (2004). Association of epigenetic inactivation of RASSF1A with poor outcome in human neuroblastoma. Clinical Cancer Research, 10, 8493–8500.

    PubMed  CAS  Google Scholar 

  32. Teitz, T., Wei, T., Valentine, M. B., Vanin, E. F., Grenet, J., Valentine, V. A., et al. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Natural Medicines, 6, 529–535.

    CAS  Google Scholar 

  33. Yan, P., Muhlethaler, A., Bourloud, K. B., Beck, M. N., & Gross, N. (2003). Hypermethylation-mediated regulation of CD44 gene expression in human neuroblastoma. Genes, Chromosomes & Cancer, 36, 129–138.

    CAS  Google Scholar 

  34. Kornberg, L., Earp, H. S., Parsons, J. T., Schaller, M., & Juliano, R. L. (1992). Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. Journal of Biological Chemistry, 267, 23439–23442.

    PubMed  CAS  Google Scholar 

  35. Meyer, A., van Golen, C. M., Kim, B., van Golen, K. L., & Feldman, E. L. (2004). Integrin expression regulates neuroblastoma attachment and migration. Neoplasia, 6, 332–342.

    PubMed  CAS  Google Scholar 

  36. Stupack, D. G., Teitz, T., Potter, M. D., Mikolon, D., Houghton, P. J., Kidd, V. J., et al. (2006). Potentiation of neuroblastoma metastasis by loss of caspase-8. Nature, 439, 95–99.

    PubMed  CAS  Google Scholar 

  37. Rudy, W., Hofmann, M., Schwartz-Albiez, R., Zoller, M., Heider, K. H., Ponta, H., et al. (1993). The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: Each one individually suffices to confer metastatic behavior. Cancer Research, 53, 1262–1268.

    PubMed  CAS  Google Scholar 

  38. Naor, D., Sionov, R. V., & Ish-Shalom, D. (1997). CD44: Structure, function, and association with the malignant process. Advances in Cancer Research, 71, 241–319.

    Article  PubMed  CAS  Google Scholar 

  39. Combaret, V., Gross, N., Lasset, C., Frappaz, D., Peruisseau, G., Philip, T., et al. (1996). Clinical relevance of CD44 cell-surface expression and N-myc gene amplification in a multicentric analysis of 121 pediatric neuroblastomas. Journal of Clinical Oncology, 14, 25–34.

    PubMed  CAS  Google Scholar 

  40. Shtivelman, E., & Bishop, J. M. (1991). Expression of CD44 is repressed in neuroblastoma cells. Molecular and Cellular Biology, 11, 5446–5453.

    PubMed  CAS  Google Scholar 

  41. Rudzki, Z., & Jothy, S. (1997). CD44 and the adhesion of neoplastic cells. Molecular Pharmacology, 50, 57–71.

    CAS  Google Scholar 

  42. Sugiura, Y., Shimada, H., Seeger, R. C., Laug, W. E., & DeClerck, Y. A. (1998). Matrix metalloproteinases-2 and -9 are expressed in human neuroblastoma: Contribution of stromal cells to their production and correlation with metastasis. Cancer Research, 58, 2209–2216.

    PubMed  CAS  Google Scholar 

  43. Jodele, S., Blavier, L., Yoon, J. M., & DeClerck, Y. A. (2006). Modifying the soil to affect the seed: Role of stromal-derived matrix metalloproteinases in cancer progression. Cancer Metastasis Reviews, 25, 35–43.

    PubMed  CAS  Google Scholar 

  44. Chantrain, C. F., Shimada, H., Jodele, S., Groshen, S., Ye, W., Shalinsky, D. R., et al. (2004). Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Research, 64, 1675–1686.

    PubMed  CAS  Google Scholar 

  45. Jodele, S., Chantrain, C. F., Blavier, L., Lutzko, C., Crooks, G. M., Shimada H., et al. (2005). The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Research, 65, 3200–3208.

    PubMed  CAS  Google Scholar 

  46. Sugiura, Y., Ma, L. Q., Sun, B., Shimada, H., Laug, W. E., Seeger, R. C., et al. (1999). The plasminogen–plasminogen activator (PA) system in neuroblastoma: Role of PA inhibitor-1 in metastasis. Cancer Research, 59, 1327–1336.

    PubMed  CAS  Google Scholar 

  47. Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour–host interface. Nature, 411, 375–379.

    PubMed  CAS  Google Scholar 

  48. Wall, S. J., Werner, E., Werb, Z., & DeClerck, Y. A. (2005). Discoidin domain receptor 2 mediates tumor cell cycle arrest induced by fibrillar collagen. Journal of Biological Chemistry, 280, 40187–40194.

    PubMed  CAS  Google Scholar 

  49. Taichman, R. S., Cooper, C., Keller, E. T., Pienta, K. J., Taichman, N. S., & McCauley, L. K. (2002). Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Research, 62, 1832–1837.

    PubMed  CAS  Google Scholar 

  50. Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I. P., & Ben Baruch A. (2001). A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. Journal of Immunology, 167, 4747–4757.

    CAS  Google Scholar 

  51. Russell, H. V., Hicks, J., Okcu, M. F., & Nuchtern, J. G. (2004). CXCR4 expression in neuroblastoma primary tumors is associated with clinical presentation of bone and bone marrow metastases. Journal of Pediatric Surgery, 39, 1506–1511.

    PubMed  Google Scholar 

  52. Nevo, I., Sagi-Assif, O., Meshel, T., Geminder, H., Goldberg-Bittman, L., Ben Menachem, S., et al. (2004). The tumor microenvironment: CXCR4 is associated with distinct protein expression patterns in neuroblastoma cells. Immunology Letters, 92, 163–169.

    PubMed  CAS  Google Scholar 

  53. Airoldi, I., Raffaghello, L., Piovan, E., Cocco, C., Carlini, B., Amadori, A., et al. (2006). CXCL12 does not attract CXCR4+ human metastatic neuroblastoma cells: Clinical implications. Clinical Cancer Research, 12, 77–82.

    PubMed  CAS  Google Scholar 

  54. Vande, B. I., Asosingh, K., Vanderkerken, K., Straetmans, N., Van Camp, B., & Van, R. I. (2003). Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. British Journal of Cancer, 88, 855–862.

    Google Scholar 

  55. Metelitsa, L. S., Wu, H. W., Wang, H., Yang, Y., Warsi, Z., Asgharzadeh, S., et al. (2004). Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. Journal of Experimental Medicine, 199, 1213–1221.

    PubMed  CAS  Google Scholar 

  56. Kozlow, W., & Guise, T. A. (2005). Breast cancer metastasis to bone: Mechanisms of osteolysis and implications for therapy. Journal of Mammary Gland Biology and Neoplasia, 10, 169–180.

    PubMed  Google Scholar 

  57. Yin, T., & Li, L. (2006). The stem cell niches in bone. Journal of Clinical Investigation, 116, 1195–1201.

    PubMed  CAS  Google Scholar 

  58. Teitelbaum, S. L. (2000). Bone resorption by osteoclasts. Science, 289, 1504–1508.

    PubMed  CAS  Google Scholar 

  59. Michigami, T., Ihara-Watanabe, M., Yamazaki, M., & Ozono, K. (2001). Receptor activator of nuclear factor kappaB ligand (RANKL) is a key molecule of osteoclast formation for bone metastasis in a newly developed model of human neuroblastoma. Cancer Research, 61, 1637–1644.

    PubMed  CAS  Google Scholar 

  60. Granchi, D., Amato, I., Battistelli, L., Avnet, S., Capaccioli, S., Papucci L., et al. (2004). In vitro blockade of receptor activator of nuclear factor-kappaB ligand prevents osteoclastogenesis induced by neuroblastoma cells. International Journal of Cancer, 111, 829–838.

    CAS  Google Scholar 

  61. Sohara, Y., Shimada, H., Minkin, C., Erdreich-Epstein, A., Nolta, J. A., & DeClerck, Y. A. (2005). Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Research, 65, 1129–1135.

    PubMed  CAS  Google Scholar 

  62. McKee, A. E., Martin, K., Markovic, A., Greer, B. T., Wei, J. S., Chen, Q. R. et al. (2006). BDNF/TrkB pathway upregulates PTHrP in neuroblastoma. AACR Meeting Abstracts 2006, 936-a.

  63. Ren, Y., Chan, H. M., Li, Z., Lin, C., Nicholls, J., Chen, C. F., et al. (2004). Upregulation of macrophage migration inhibitory factor contributes to induced N-Myc expression by the activation of ERK signaling pathway and increased expression of interleukin-8 and VEGF in neuroblastoma. Oncogene, 23, 4146–4154.

    PubMed  CAS  Google Scholar 

  64. Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4, 71–78.

    PubMed  CAS  Google Scholar 

  65. Liu, X. H., Kirschenbaum, A., Yao, S., & Levine, A. C. (2005). Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Endocrinology, 146, 1991–1998.

    PubMed  CAS  Google Scholar 

  66. Hoozemans, J. J., Veerhuis, R., Janssen, I., Rozemuller, A. J., & Eikelenboom, P. (2001). Interleukin-1beta induced cyclooxygenase 2 expression and prostaglandin E2 secretion by human neuroblastoma cells: Implications for Alzheimer’s disease. Experimental Gerontology, 36, 559–570.

    PubMed  CAS  Google Scholar 

  67. Kopp, H. G., Avecilla, S. T., Hooper, A. T., & Rafii, S. (2005). The bone marrow vascular niche: Home of HSC differentiation and mobilization. Physiology (Bethesda), 20, 349–356.

    CAS  Google Scholar 

  68. Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109, 625–637.

    PubMed  CAS  Google Scholar 

  69. McQuibban, G. A., Butler, G. S., Gong, J. H., Bendall, L., Power, C., Clark-Lewis, I., et al. (2001). Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. Journal of Biological Chemistry, 276, 43503–43508.

    PubMed  CAS  Google Scholar 

  70. Stadtfeld, M., & Graf, T. (2005). Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing. Development, 132, 203–213.

    PubMed  CAS  Google Scholar 

  71. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.

    PubMed  CAS  Google Scholar 

  72. Minguell, J. J., Erices, A., & Conget, P. (2001). Mesenchymal stem cells. Experimental Biology and Medicine (Maywood, N. J.), 226, 507–520.

    CAS  Google Scholar 

  73. Vaananen, H. K. (2005). Mesenchymal stem cells. Annals of Medicine, 37, 469–479.

    PubMed  Google Scholar 

  74. Kemp, K. C., Hows, J., & Donaldson, C. (2005). Bone marrow-derived mesenchymal stem cells. Leukemia & Lymphoma, 46, 1531–1544.

    Google Scholar 

  75. van Golen, C. M., Schwab, T. S., Kim, B., Soules, M. E., Su, O. S., Fung, K., et al. (2006). Insulin-like growth factor-I receptor expression regulates neuroblastoma metastasis to bone. Cancer Research, 66, 6570–6578.

    PubMed  Google Scholar 

  76. Kim, B., van Golen, C. M., & Feldman, E. L. (2004). Insulin-like growth factor-I signaling in human neuroblastoma cells. Oncogene, 23, 130–141.

    PubMed  CAS  Google Scholar 

  77. van Golen, C. M., Castle, V. P., & Feldman, E. L. (2000). IGF-I receptor activation and BCL-2 overexpression prevent early apoptotic events in human neuroblastoma. Cell Death and Differentiation, 7, 654–665.

    PubMed  Google Scholar 

  78. Chambery, D., Mohseni-Zadeh, S., De Galle, B., & Babajko S. (1999). N-myc regulation of type I insulin-like growth factor receptor in a human neuroblastoma cell line. Cancer Research, 59, 2898–2902.

    PubMed  CAS  Google Scholar 

  79. Ho, R., Minturn, J. E., Hishiki, T., Zhao, H., Wang, Q., Cnaan, A., et al. (2005). Proliferation of human neuroblastomas mediated by the epidermal growth factor receptor. Cancer Research, 65, 9868–9875.

    PubMed  CAS  Google Scholar 

  80. Stockhausen, M. T., Sjolund, J., & Axelson, H. (2005). Regulation of the Notch target gene Hes-1 by TGFalpha induced Ras/MAPK signaling in human neuroblastoma cells. Experimental Cell Research, 310, 218–228.

    PubMed  CAS  Google Scholar 

  81. Middlemas, D. S., Kihl, B. K., Zhou, J., & Zhu, X. (1999). Brain-derived neurotrophic factor promotes survival and chemoprotection of human neuroblastoma cells. Journal of Biological Chemistry, 274, 16451–16460.

    PubMed  CAS  Google Scholar 

  82. Jaboin, J., Kim, C. J., Kaplan, D. R., & Thiele, C. J. (2002). Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Research, 62, 6756–6763.

    PubMed  CAS  Google Scholar 

  83. Lahn, M. M., Sundell, K. L., & Paterson, B. M. (2004). The role of protein kinase C-alpha in malignancies of the nervous system and implications for the clinical development of the specific PKC-alpha inhibitor aprinocarsen (Review). Oncology Reports, 11, 515–522.

    PubMed  CAS  Google Scholar 

  84. Pearse, R. N., Swendeman, S. L., Li, Y., Rafii, D., & Hempstead, B. L. (2005). A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood, 105, 4429–4436.

    PubMed  CAS  Google Scholar 

  85. Li, Z., Jaboin, J., Dennis, P. A., & Thiele, C. J. (2005). Genetic and pharmacologic identification of Akt as a mediator of brain-derived neurotrophic factor/TrkB rescue of neuroblastoma cells from chemotherapy-induced cell death. Cancer Research, 65, 2070–2075.

    PubMed  CAS  Google Scholar 

  86. Hu, Y., Sun, C. Y., Wang, H. F., Guo, T., Wei, W. N., Wang, Y. D., et al. (2006). Brain-derived neurotrophic factor promotes growth and migration of multiple myeloma cells. Cancer Genetics and Cytogenetics, 169, 12–20.

    PubMed  CAS  Google Scholar 

  87. Sohara, Y., Shimada, H., & DeClerck, Y. A. (2005). Mechanisms of bone invasion and metastasis in human neuroblastoma. Cancer Letters, 228, 203–209.

    PubMed  CAS  Google Scholar 

  88. Candi, E., Knight, R. A., Spinedi, A., Guerrieri, P., & Melino, G. (1997). A possible growth factor role of IL-6 in neuroectodermal tumours. Journal of Neuro-oncology, 31, 115–122.

    PubMed  CAS  Google Scholar 

  89. Knezevic-Cuca, J., Stansberry, K. B., Johnston, G., Zhang, J., Keller, E. T., Vinik, A. I., & Pittenger, G. L. (2000). Neurotrophic role of interleukin-6 and soluble interleukin-6 receptors in N1E-115 neuroblastoma cells. Journal of Neuroimmunology, 102, 8–16.

    PubMed  CAS  Google Scholar 

  90. Sohara, Y., Shimada, H., Scadeng, M., Pollack, H., Yamada, S., Ye, W., et al. (2003). Lytic bone lesions in human neuroblastoma xenograft involve osteoclast recruitment and are inhibited by bisphosphonate. Cancer Research, 63, 3026–3031.

    PubMed  CAS  Google Scholar 

  91. Mouchess, M. L., Sohara, Y., Nelson, M. D., Jr., DeClerck, Y. A., & Moats, R. A. (2006). Multimodal imaging analysis of tumor progression and bone resorption in a murine cancer model. Journal of Computer Assisted Tomography, 30, 525–534.

    PubMed  Google Scholar 

  92. Urashima, M., Chen, B. P., Chen, S., Pinkus, G. S., Bronson, R. T., Dedera, D. A., et al. (1997). The development of a model for the homing of multiple myeloma cells to human bone marrow. Blood, 90, 754–765.

    PubMed  CAS  Google Scholar 

  93. Green, J. R. (2003). Antitumor effects of bisphosphonates. Cancer, 97, 840–847.

    PubMed  Google Scholar 

  94. Derenne, S., Amiot, M., Barille, S., Collette, M., Robillard, N., Berthaud, P., et al. (1999). Zoledronate is a potent inhibitor of myeloma cell growth and secretion of IL-6 and MMP-1 by the tumoral environment. Journal of Bone and Mineral Research, 14, 2048–2056.

    PubMed  CAS  Google Scholar 

  95. Hiraga, T., Williams, P. J., Mundy, G. R., & Yoneda, T. (2001). The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Cancer Research, 61, 4418–4424.

    PubMed  CAS  Google Scholar 

  96. Chen, T., Berenson, J., Vescio, R., Swift, R., Gilchick, A., Goodin, S., et al. (2002). Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. Journal of Clinical Pharmacology, 42, 1228–1236.

    PubMed  CAS  Google Scholar 

  97. Body, J. J., Greipp, P., Coleman, R. E., Facon, T., Geurs, F., Fermand, J. P., et al. (2003). A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer, 97, 887–892.

    PubMed  Google Scholar 

  98. Dougall, W., & Chaisson, M. (2006). A monoclonal antibody targeting RANKL as a therapy for cancer-induced bone diseases. Clinical Calcium, 16, 95–103.

    Google Scholar 

  99. Body, J. J., Facon, T., Coleman, R. E., Lipton, A., Geurs, F., Fan, M., et al. (2006). A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clinical Cancer Research, 12, 1221–1228.

    PubMed  CAS  Google Scholar 

  100. Evans, A. E., Kisselbach, K. D., Liu, X., Eggert, A., Ikegaki, N., Camoratto, A. M., et al. (2001). Effect of CEP-751 (KT-6587) on neuroblastoma xenografts expressing TrkB. Medical and Pediatric Oncology, 36, 181–184.

    PubMed  CAS  Google Scholar 

  101. Hideshima, T., Richardson, P., Chauhan, D., Palombella, V. J., Elliott, P. J., Adams, J., et al. (2001). The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Research, 61, 3071–3076.

    PubMed  CAS  Google Scholar 

  102. Chauhan, D., Hideshima, T., Mitsiades, C., Richardson, P., & Anderson, K. C. (2005). Proteasome inhibitor therapy in multiple myeloma. Molecular Cancer Therapeutics, 4, 686–692.

    PubMed  CAS  Google Scholar 

  103. Hideshima, T., Chauhan, D., Richardson, P., Mitsiades, C., Mitsiades, N., Hayashi, T., et al. (2002). NF-kappa B as a therapeutic target in multiple myeloma 85. Journal of Biological Chemistry, 277, 16639–16647.

    PubMed  CAS  Google Scholar 

  104. Wallner, L., Dai, J., Escara-Wilke, J., Zhang, J., Yao, Z., Lu, Y., et al. (2006). Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Cancer Research, 66, 3087–3095.

    PubMed  CAS  Google Scholar 

  105. Su, J. L., Lai, K. P., Chen, C. A., Yang, C. Y., Chen, P. S., Chang, C. C., et al. (2005). A novel peptide specifically binding to interleukin-6 receptor (gp80) inhibits angiogenesis and tumor growth. Cancer Research, 65, 4827–4835.

    PubMed  CAS  Google Scholar 

  106. De Clercq, E., & Schols, D. (2001). Inhibition of HIV infection by CXCR4 and CCR5 chemokine receptor antagonists. Antiviral Chemistry & Chemotherapy, 12(Suppl. 1), 19-31.

    Google Scholar 

  107. Devine, S. M., Flomenberg, N., Vesole, D. H., Liesveld, J., Weisdorf, D., Badel, K., et al. (2004). Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. Journal of Clinical Oncology, 22, 1095–1102.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves A. DeClerck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ara, T., DeClerck, Y.A. Mechanisms of invasion and metastasis in human neuroblastoma. Cancer Metastasis Rev 25, 645–657 (2006). https://doi.org/10.1007/s10555-006-9028-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9028-9

Keywords

Navigation