Skip to main content

Advertisement

Log in

Structural and Functional Imaging Correlates of Cognitive and Brain Reserve Hypotheses in Healthy and Pathological Aging

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

In the field of ageing and dementia, brain- or cognitive reserve refers to the capacity of the brain to manage pathology or age-related changes thereby minimizing clinical manifestations. The brain reserve capacity (BRC) hypothesis argues that this capacity derives from an individual’s unique neural profile (e.g., cell count, synaptic connections, brain volume, etc.). Complimentarily, the cognitive reserve (CR) hypothesis emphasizes inter-individual differences in the effective recruitment of neural networks and cognitive processes to compensate for age-related effects or pathology. Despite an abundance of research, there is scarce literature attempting to synthesize the BRC the CR models. In this paper, we will review important aging and dementia studies using structural and functional neuroimaging techniques to investigate and attempt to assimilate both reserve hypotheses. The possibility to conceptualize reserve as reflecting indexes of brain plasticity will be proposed and novel data suggesting an intimate and complex correspondence between active and passive components of reserve will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anchisi D, Borroni B, Franceschi M, Kerrouche N, Kalbe E, Beuthien-Beumann B, Cappa S, Lenz O, Ludecke S, Marcone A, Mielke R, Ortelli P, Padovani A, Pelati O, Pupi A, Scarpini E, Weisenbach S, Herholz K, Salmon E, Holthoff V, Sorbi S, Fazio F, Perani D (2005) Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol 62(11):1728–1733

    Article  PubMed  Google Scholar 

  • Alexander GE, Furey ML, Grady CL, Pietrini P, Brady DR, Mentis MJ, Schapiro MB (1997) Association of premorbid intellectual function with cerebral metabolism in Alzheimer's disease: implications for the cognitive reserve hypothesis. Am J Psychiatry 154(2):165–172.

    Google Scholar 

  • Arenaza-Urquijo EM, Bosch B, Sala-Llonch R, Solé-Padullés C, Junqué C, Fernández-Espejo D, Bargalló N, Rami L, Molinuevo JL, Bartrés-Faz D (2011) Specific anatomic association between White matter integrity and cognitive reserve in normal and cognitively impaired elders. Am J Geriatr Psychiatry 19(1):33–42

    Article  PubMed  Google Scholar 

  • Bartrés-Faz D, Solé-Padullés C, Junqué C, Rami L, Bosch B, Bargalló N, Falcón C, Sánchez-Valle R, Molinuevo JL (2009) Interactions of cognitive reserve with regional brain anatomy and brain fuction during a working memory task in healthy elders. Biol Psychol 80(2):256–259

    Article  PubMed  Google Scholar 

  • Bosch B, Bartrés-Faz D, Rami L, Arenaza-Urquijo EM, Fernández-Espejo D, Junqué C, Solé-Padullés C, Sánchez-Valle R, Bargalló N, Falcón C, Molinuevo JL (2010a) Cognitive reserve modulates task-induced activations and deactivations in healthy elders, amnestic mild cognitive impairment and mild Alzheimer’s disease. Cortex 46(4):451–461

    Article  PubMed  Google Scholar 

  • Bosch B, Arenaza-Urquijo EM, Rami L, Sala-Llonch R, Junqué C, Solé-Padullés C, Peña-Gómez C, Bargalló N, Molinuevo JL, Bartrés-Faz D (2010b) Multiple index analysis in normal aging, amnestic MCI and AD. Relationship with neuropsychological performance. Neurobiol Aging. [Epub ahead of print] PMID: 20371138

  • Boyke J, Driemeyer J, Gaser C, Büchel C, May A (2008) Training-induced brain astructure changes in the elderly. J Neurosci 28(28):7031–7035

    Article  PubMed  CAS  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy function and relevance to disease. Ann N Y Acad Sci 1124:38

    Google Scholar 

  • Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain conectome. Ann Rev Clin Psychol. 10.1146/annurev-clinpsy-040510-143934

  • Cabeza R (2002) Hemispheric asymmetry reduction in old adults: the HAROLD model. Psychol Aging 17:85–100

    Article  PubMed  Google Scholar 

  • Chetelat G, Villemagne VL, Pike KE, Baron JC, Bourgeat P, Jones G, Faux NG, Ellis KA, Salvado O, Szoeke C, Martins RN, Ames D, Masters CL, Rowe CC (2010) AustralianImaging Biomarkers Lifestly Study of Ageing (AIBL) Research Group. Brain 133(11):3349–3358

    Article  PubMed  Google Scholar 

  • Christensen H, Anstey KJ, Leach LS, Mackinnon AJ (2008) Intelligence, education, and the brain reserve hypothesis. In: Craik FIM, Salthouse TA (eds) The handbook of aging and cognition, 3rd edn. Psychology Press, NY

  • Christensen H, Batterham PJ, Mackinnon AJ, Anstey KJ, Wen W, Sachdev PS (2009) Education, atrophy, and cognitive change in an epidemiological sample in early old age. Am J Geriatr Psychiatry 17(3):218–226

    Article  PubMed  Google Scholar 

  • Coffey CE, Saxton JA, Ratcliff G, Bryan RN, Lucke JF (1999) Relation of education to brain size in normal aging: implications for the reserve hypothesis. Neurology 53(1):189–196

    PubMed  CAS  Google Scholar 

  • Cohen AD, Price JC, Weissfeld LA, James J, Rosario BL, Bi W, Nebes RD, Saxton JA, Snitz BE, Aizenstein HA, Wolk DA, Dekosky ST, Mathis CA, Klunk WE (2009) Basal cerebral metabolism may modulate the cognitive effects of Abeta in mild cognitive impairment: and example of brain reserve. J Neurosci 29(47):14770–14778

    Article  PubMed  CAS  Google Scholar 

  • Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 61(11):1166–1170

    PubMed  Google Scholar 

  • Davis SW, Dennis NA, Daselaar SM, Fleck MS, Cabeza R (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex 18(5):1201–1209

    Article  PubMed  Google Scholar 

  • Del Ser T, González-Montalvo JI, Martínez-Espinosa S, Delgado Villapalos C, Bermejo F (1997) Estimation of premorbid intelligence in Spanish people with the Word Accentuation Test and its application to the diagnosis of the dementia. Brain Cogn 33(3):343–356

    Article  PubMed  CAS  Google Scholar 

  • Dolcos F, Rice HJ, Cabeza R (2002) Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction. Neurosci Biobehav Rev 26(7):819–825

    Article  PubMed  Google Scholar 

  • Draganski B, May A (2008) Training-induced structural changes in the adult human brain. Behav Brain Res 192:137–142

    Article  PubMed  CAS  Google Scholar 

  • Driemeyer J, Boyke J, Gaser C, Büchel C, May A (2008) Changes in gray matter induced by learning—revisited. PLoS ONE 3(7):e2669

    Article  PubMed  Google Scholar 

  • Driscoll I, Renick SM, Troncoso JC, An Y, O’Brien R, Zonderman AB (2006) Impact of Alzheimer’s pathology on cognitive trajectories in nondemented elderly. Ann Neurol 60(6):688–695

    Article  PubMed  Google Scholar 

  • Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Scheltens P (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9(11):1118–1127

    Article  PubMed  Google Scholar 

  • Dufouil C, Alpérovitch A, Tzourio C (2003) Influence of education on the relationship between white matter lesions and cognition. Neurology 60(5):831–836

    PubMed  CAS  Google Scholar 

  • Engvig A, Fjell AM, Westlye LT, Moberget T, Sundseth O, Larsen V, Walhovd KB (2010) Effects of memory training on cortical thickness in the elderly. Neuroimage 52:1667–1676

    Article  PubMed  Google Scholar 

  • Fernández-Espejo D, Junqué C, Vendrell P, Bernabeu M, Roig T, Bargalló N, Mercader JM (2008) Cerebral response to speech in vegetative and minimally conscious states after traumatic brain injury. Brain Inj 22(11):882–890

    Article  PubMed  Google Scholar 

  • Fleisher AS, Sherzai A, Taylor C, Langbaum JB, Chen K, Buxton RB (2009) Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer’s disease risk groups. Neuroimage 47(4):1678–1690

    Article  PubMed  Google Scholar 

  • Freitas C, Perez J, Knobel M, Tormos JM, Oberman L, Eldaief M, Bashir S, Vernet M, Peña-Gómez C, Pascual-Leone A (2011) Changes in cortical plasticity across the lifespan. Front Aging Neurosci 9(3):5

    Google Scholar 

  • Gates N, Valenzuela M (2010) Cognitive exercise and its role in cognitive function in old adults. Curr Psychiatry Rep 12:20–27

    Article  PubMed  Google Scholar 

  • Go JO, Park DC (2009) Neuroplasticity and cognitive aging: the scaffolding theory of aging and cognition. Restor Neurol Neurosci 27(5):391–403. Review.

    Google Scholar 

  • Goodglass H, Kaplan E (1972) The assessment of aphasia and related disorders. Lea Febiger, Philadephia

    Google Scholar 

  • Grady CL, Maisog JM, Horwitz B, Ungerleider LG, Mentis MJ, Salerno JA, Pietrini P, Wagner E, Haxby JV (1994) Age-related changes in cortical blookd flow activation during visual processing of faces and location. J Neurosci 14(3 Pt 2):1450–1462

    Google Scholar 

  • Greenwood PM, Pasasuranam R (2010) Neuronal and cognitive plasticity: a neurocognitive framework for ameliorating cognitive aging. Front Aging Neurosci 2:150

    PubMed  Google Scholar 

  • Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Porc Natl Acad Sci USA 101(13):4637–4642

    Article  CAS  Google Scholar 

  • Gurland BJ, Wilder D, Cross P, Peter M, Lantigua R, Teresi J, Barret V, Stern Y, Mayeux R (1995) Relative rates of dementia by multiple case definitions, over two prevalence periods, in three cultural groups. Am J Geriatr Psychiatry 3(1):6–20

    Google Scholar 

  • Habeck C, Hilton HJ, Zarahn E, Flynn J, Moeller J, Stern Y (2003) Relation of cognitive reserve and task performance to expression of regional covariance networks in an event-related fMRI study of nonverbal memory. Neuroimage 20(3):1723–1733

    Article  PubMed  Google Scholar 

  • Hedden T, Van Dijk KRA, Becker JA, Mehta A, Sperling RA, Johnson KA, Buckner RL (2009) Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci 29(40):12686–12694

    Article  PubMed  CAS  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010a) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128

    Article  PubMed  CAS  Google Scholar 

  • Jack CR Jr, Wiste HJ, Vermuri P, Weigand SD, Senjem ML, Zeng G, Bernstein MA, Gunter JL, Pankratz VS, Aisen PS, Weiner MW, Petersen RC, Shaw LM, Trojanowsky JQ, Knopman DS (2010b) Alzheimer disease neuroimaging initiative. Brain 133(11):3336–3348

    Article  PubMed  Google Scholar 

  • Jones RN, Manly J, Glymour MM, Rentz DM, Jefferson AL, Stern Y (2011) Conceptual and measurement challenges in research on cognitive reserve. J Int Neuropsychol Soc 17:1–9

    Article  Google Scholar 

  • Karp A, Paillard-Borg S, Wang HX, Silverstein M, Winblad B, Fratiglioni L (2006) Mental, physical and social components in leisure activities equally contribute to decrease dementia risk. Dement Geriatr Cogn Disord 21(2):65–73

    Article  PubMed  Google Scholar 

  • Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23:138–144

    Article  PubMed  CAS  Google Scholar 

  • Kemppainen NM, Aalto S, Karrasch M, Nagren K, Savisto N, Oikonen V, Viitanen M, Parkkola R, Rinne JO (2008) Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeosyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Ann Neurol 63(1):112–118

    Article  PubMed  Google Scholar 

  • Kidron D, Black SE, Stanchev P, Buck B, Szalai JP, Parker J, Szekely C, Bronskill MJ (1997) Quantitative MR volumetry in Alzheimer’s disease. Topographic markers and the effects of sex and education. Neurology 49(6):1504–1512

    PubMed  CAS  Google Scholar 

  • Kirchhoff BA, Anderson BA, Barch DM, Jacoby JL (2011) Cognitive and neural effects of semantic encoding stragegy trainint in older adults. Cereb Cortex 2011 Jun 27. [Epub ahead of print] PubMed PMID: 21709173

  • Lustig C, Snyder AZ, Bhakta M, O’Brien KC, McAvoy M, Raichle ME, Morris JC, Buckner RL (2003) Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci USA 100(24):14504–14509

    Article  PubMed  CAS  Google Scholar 

  • Manenti R, Cotelli M, Miniussi C (2011) Succesful physiological aging and episodic memory: a brain stimulation sudy. Behav Brain Res 216:153–158

    Article  PubMed  Google Scholar 

  • Mathis CA, Lopresti BJ, Klunk WE (2007) Impact of amyloid imaging on drug development in Alzheimer’s disease. Nucl Med Biol 34(7):809–822

    Article  PubMed  CAS  Google Scholar 

  • Medina DA, Gaviria M (2008) Diffusion tensor imaging investigations in Alzheimer’s disease: the resurgence of white matter compromise in the cortical dysfunction of the aging brain. Brain 4(4):42–7373

    Google Scholar 

  • Mercado E (2008) Neural and cognitive plasticity: from maps to mids. Psychol Bull 134(1):109–137

    Article  PubMed  Google Scholar 

  • Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulated cortex in very early Alzheimer’s disease. Ann Neurol 42(1):85–94

    Article  PubMed  CAS  Google Scholar 

  • Mormino EC, Smiljic A, Hayenga AO, H Onami S, Greicius MD, Rabinovici GD, Janabi M, Baker SL, V Yen I, Madison CM, Miller BL, Jagust WJ (2011) Relationships between beta-amyloid and functional connectivity in different components of the default mode network in aging. Cereb Cortex. Mar; [Epub ahead of print] PMID: 21383234

  • Mortel KF, Meyer JS, Herod B, Thornby J (1995) Education and occupation as risk factors for dementias of the Alzheimer and ischemic vascular types. Dementia 6(1):55–62

    PubMed  CAS  Google Scholar 

  • Mortimer JA, Snowdon DA, Markesbery WR (2003) Head circumference education and risk of dementia: findings from the Nun Study. J Clin Exp Neuropsychol 25(5):671–679

    Article  PubMed  Google Scholar 

  • Nebes RD, Meltzer CC, Whyte EM, Scanlon JM, Haligan EM, Saxton JA, Houck PR, Boada FE, Dekosky ST (2006) The relation of white matter hyperintensities to cognitive performance in the normal old: education matters. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 13(3–4):326–340

    PubMed  Google Scholar 

  • Pascual-Leone A, Amedi A, Fregni F, Merabet LB (2005) The plastic human brain. Annu Rev Neurosci 28:377–401

    Article  PubMed  CAS  Google Scholar 

  • Pengas G, Hodges JR, Watson P, Nestor PJ (2010) Focal posterior cingulate atrophy in incipiente Alzheimer’s disease. Neurobiol Aging 31(1):25–33

    Article  PubMed  Google Scholar 

  • Perneczky R, Drzezga A, Diehl-Schmid J, Schmid G, Wohlschläger A, Kars S, Grimmer T, Wagenpfeil S, Monsch A, Kurz A (2006) Schooling mediates brain reserve in Alzheimer’s disease: findings of fluoro.deoxy-glucose-positron emission tomography. J Neurol Neurosurg 77(9):1060–1063

    Google Scholar 

  • Perneczky R, Wagenpfeil S, Lunetta KL, Cupples LA, Green RC, Decarli C, Farrer LA, Kurz A, Study Group MIRAGE (2010) Head circumference, atrophy, and cognition: implications for brain reserve in Alzheimer disease. Neurology 75(2):137–142

    Article  PubMed  Google Scholar 

  • Pernezcky R, Häussermman P, Drzezga A, Boecker H, Granert O, Feurer R, Forstl H, Kurz A (2009) Fluoro-deoxy-glucose positron emission tomography correlates of impaired activities of daily living in dementia with Lewy bodies: implications cognitive reserve. Am J Geriatr Psychiatry 17(3):188–195

    Article  Google Scholar 

  • Persson J, Lustig C, Nelson JK, Reuter-Lorenz PA (2007) Age differences in deactivation: a link to cognitive control? J Cogn Neurosci 19(6):1021–1032

    Article  PubMed  Google Scholar 

  • Petrella JR, Prince SE, Wang L, Hellegers C, Doraiswamy PM (2007) Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS One 2(10):e114

    Article  Google Scholar 

  • Querbes O, Aubry F, Pariente J, Lotterie JA, Démonet JF, Duret V, Puel M, Berry I, Fort JC, Celsis P (2009) Alzheimer’s Disease Neuroimaging Initiative. Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132(Pt8):2036–2047

    Google Scholar 

  • Rami L, Serradell M, Bosch B, Villar A, Molinuevo JL (2007) Perception Digital Test (PDT) for the assessment of incipient visual disorder in initial Alzheimer’s disease. Neurologia 22(6):342–347

    PubMed  CAS  Google Scholar 

  • Reed BR, Mungas D, Farias ST, Harvey D, Beckett L, Widaman K, Hinton L, DeCarli C (2010) Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain 133(Pt8):2196–2209

    Google Scholar 

  • Rentz DM, Locascio JJ, Becker JA, Moran Ek, Eng E, Buckner RL, Sperlin RA, Johson KA (2010) Cognition, reserve, and amyloid deposition ni normal aging. Ann Neurol 67(3):353–364

    Article  PubMed  Google Scholar 

  • Roe CM, Mintun MA, D’Angelo G, Xiong C, Grant EA, Morris JC (2008) Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled Pitstburgh compound B uptake. Arch Neurology 65(11):1467–1471

    Google Scholar 

  • Roe CM, Mintun MA, Ghoshal N, Williams MM, Gran EA, Marcus DS, Morris JC (2010) Alzheimer disease identification using amyloid imaging and reserve variables: proof of concept. Neurology 75(1):42–48

    Article  PubMed  Google Scholar 

  • Rovio S, Spulber G, Nieminen LJ, Niskanene E, Winblad B, Tuomilehto J, Nissinen A, Soininen H, Kivipelto M (2010) Neurobiol Aging. 31(11):1927–1936

  • Sala-Llonch R, Bosch B, Arenaza-Urquijo EM, Rami L, Bargalló N, Junqué C, Molinuevo JL, Bartrés-Faz D (2010a) Greater default-mode network abnormalities compared to high order visual processing systems in amnestic mild cognitive impairment: an integrated multi-modal MRI study. J Alzheimers Dis 22(2):523–539

    PubMed  Google Scholar 

  • Sala-Llonch R, Bosch B, Arenaza-Urquijo EM, Rami L, Junqué C, Bargalló N, Molinuevo JL, Bartrés-Faz D (2010b) Structural and functional correlates of Cognitive Reserve in a visuoperceptive network among a-MCI. Presented at the 16th annual meeting of the organization for human brain mapping, Barcelona

  • Sambataro F, Murty VP, Callicott JH, Tan HY, Das S, Weinberger DR, Mattay VS (2010) Age-related alterations in default mode network: impact on working memory performance. Neurobiol Aging 31(5):839–852

    Article  PubMed  Google Scholar 

  • Satz P, Morgenstern H, Miller EN, Selnes OA, McArthur JC, Cohen BA, Wesch J, Becker JT, Jacobson L, D’Elia LF (1993) Low education as a posible risk factor for cognitive abnormalities in HIV-1: findings from the multicenter AIDS Cohor Study (MACS). J Acquir Inmune Defi Syndr 6(5):503–511

    CAS  Google Scholar 

  • Satz P, Cole MA, Hardy DJ, Rassovsky Y (2010) Brain and cognitive reserve: mediator(s) construct validity, a critique. J Clin Exp Neuropsychol [Epub ahead of print] PMID: 2068088

  • Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC (2002) Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci USA 99(7):4701–4707

    Google Scholar 

  • Scarmeas N (2007) Lifestyle patterns and cognitive reserve. In: Stern Y (ed) Cognitive reserve. Theory and applications. Taylor & Francis, New York, pp 187–206

    Google Scholar 

  • Scarmeas N, Zarahn E, Anderson KE, Habeck CG, Hilton J, Flynn J, Marder KS, Bell KL, Sackeim HA, Van Heertum RL, Moeller JR, Stern Y (2003a) Association of life activities with cerebral blood flow in Alzheimer disease: implications for the cognitive reserve hypothesis. Arch Neurol 60(3):359–365.

  • Scarmeas N, Zarahn E, Anderson KE, Hilton J, Flynn J, Van Heertum RL, Sackeim HA, Stern Y (2003b) Cognitive reserve modulates functional brain responses during memory tasks: a PET study in health young and elderly subjects. Brain 19(3):1215–1227

    Google Scholar 

  • Scarmeas N, Habeck C, Anderson KE, Hilton J, Devanand DP, Pelton GH, Tabert MH, Flynn J, Park A, Ciappa A, Tycko B, Stern Y (2004) Altered PET functional brain responses in cognitively intact elderly persons at risk for Alzheimer disease (carriers of the epsilon4 allele). Am J Geriatr Psychiatry 12(6):596–605

    PubMed  Google Scholar 

  • Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, Stern Y (2009) Physical activity, diet, and risk of Alzheimer disease. JAMA 302(6):627–637

    Article  PubMed  CAS  Google Scholar 

  • Schofield PW, Mosesson RE, Stern Y, Mayeux R (1995) The age at onset of Alzheimer’s disease and an intracranial area measurement: a relationship. Arch Neurol 52(2):95–98

    PubMed  CAS  Google Scholar 

  • Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62(1):42–52

    Google Scholar 

  • Snowdon DA (2003) Healthy aging and dementia: findings from the Nun Study. Ann Intern Med 139:450–454

    PubMed  Google Scholar 

  • Solé-Padullés C, Bartrés-Faz D, Junqué C, Vendrell P, Rami L, Clemente IC, Bosch B, Villar A, Bargalló N, Jurado MA, Barrios M, Molinuevo JL (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 30(7):1114:24

    Google Scholar 

  • Springer MV, McIntosh AR, Winocur G, Grady CL (2005) The relation between brain activity during memory tasks and years of education in young and older adults. Neuropsychology 19(2):181–192

    Article  PubMed  Google Scholar 

  • Staff RT, Murray AD, Deary IJ, Whalley LJ (2004) What provides cerebral reserve? Brain. 127(Pt5):1191–19

  • Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8(3):448–460

    Article  PubMed  Google Scholar 

  • Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–2028

    Article  PubMed  Google Scholar 

  • Stern Y, Alexander GE, Prohovnik I, Mayeux R (1992) Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer’s disease. Ann Neurol 32(3):371–375

    Article  PubMed  CAS  Google Scholar 

  • Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R (1994) Influence of education and occupation on the incidence of Alzheimer’s disease. J Am Med Assoc 271(13):1005–1010

    Article  Google Scholar 

  • Stern Y, Alexander GE, Prohovnik I, Stricks L, Link B, Lennon MC, Mayeux R (1995) Relationship between lifetime occupation and parietal flow: implications for a reserve against Alzheimer’s disease pathology. Neurology 45(1):55–60

    PubMed  CAS  Google Scholar 

  • Stern Y, Zarahn E, Hilton J, Flyinn J, DeLaPaz R, Rakitin B (2003) Exploring the neural basis of cognitive reserve. J Clin Exp Neuropsychol 25(5):691–701

    Article  PubMed  Google Scholar 

  • Stern Y, Habeck C, Moeller J, Scarmeas N, Anderson KE, Hilton HJ, Flynn J, Sackeim H, van Heertum R (2005) Brain networks associated with cognitive reserve in healthy young and old adults. Cereb Cortex 15:394–402

    Article  PubMed  Google Scholar 

  • Stern Y, Zarahn E, Habeck C, Holtzer R, Rakitin B, Kumar A, Flynn J, Steffener J, Brown T (2008) A common neural network for cognitive resere in verbal and object working memory in young but not old. Cereb Cortex 18:959–967

    Article  PubMed  Google Scholar 

  • Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, Bergeson J, Manetti GJ, Zimmermann M, Tang B, Bartko JJ, Cohen RM (2003) Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 3298(13):1516

    Google Scholar 

  • Teipel SJ, Meindl T, Wagner M et al (2009) White matter microstructure in relation to education in aging and Alzheimer’s disease. J Alzheimers Dis 17:571–583

    PubMed  Google Scholar 

  • Teipel SJ, Bokde ALW, Meindl T, Amaro E, Soldner J, Reiser MF, Herpertz SC, Möller H-J, Hampel H (2010) White matter microstructure underlying default mode network connectivity in the human brain. Neuroimage 49:2021–2032

    Article  PubMed  Google Scholar 

  • Valenzuela MJ, Sachdev P (2006) Brain reserve and cognitive decline: a non-parametric systematic review. Psychol Med 36:1065–1073

    Article  PubMed  Google Scholar 

  • Valenzuela MJ, Sachdev P (2007) Assessment of complex mental activity across the lifespan: development of the Lifetime of Experiences Questionnaire (LEQ). Psychol Med 37(7):1015–1025

    Article  PubMed  Google Scholar 

  • Valenzuela MJ, Sachdev P, Wen W, Chen X, Brodaty H (2008) Lifespan mental activity predicts dimished rate of hippocampal atrophy. PLoS One 3(7):e2598

    Article  PubMed  Google Scholar 

  • Van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 20:519–534

    Article  PubMed  Google Scholar 

  • Wagner AP, Schmoll H, Badan I, Platt D, Kessler C (2000) Brain plasticity: to what extent do aged animals retain the capacity to coordinate gene activity in response to acute challenges. Exp Gerontol 35:1211–1227

    Article  PubMed  CAS  Google Scholar 

  • Weiner MW (2009) Imaging and biomarkers will be used for detection and monitoring progression of early Alzheimer’s disease. J Nutr Health Aging 13(4):332

    Article  PubMed  CAS  Google Scholar 

  • White L, Katzman R, Losonczy K et al (1994) Association of education with incidence of cognitive impairment in three established populations for epidemiologic studies of the elderly. J Clin Epidemiol 47:363–374

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Wen W, He Y, Xia A, Anstey KJ, Sachdev P (2010) Changing topological patterns in normal aging using large-scale structural Networks. Neurobiol Aging doi:10.1016/j.neurobiolaging.2010.06.022

Download references

Acknowledgments

Supported by a Spanish Ministerio de Ciencia e Innovación research grant (SAF2009-07489) to D.B.-F. E.M.A-U was funded by a predoctoral grant from the Generalitat de Catalunya. The authors thank Roser Sala-Llonch for her help during figure designing and Jared C. Horvath for his excellent review of the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Bartrés-Faz.

Additional information

This is one of several papers published together in Brain Topography on the ‘‘Special Issue: Brain Imaging across the Lifespan’’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartrés-Faz, D., Arenaza-Urquijo, E.M. Structural and Functional Imaging Correlates of Cognitive and Brain Reserve Hypotheses in Healthy and Pathological Aging. Brain Topogr 24, 340–357 (2011). https://doi.org/10.1007/s10548-011-0195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-011-0195-9

Keywords

Navigation