Skip to main content

Advertisement

Log in

AI-based investigation of molecular biomarkers of longevity

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

In this paper, I build deep neural networks of various structures and hyperparameters in order to predict human chronological age based on open-access biochemical indicators and their specifications from the NHANES database. In total, 1152 neural networks are trained and tested. The algorithms are trained and tested on incomplete data: missing values in data records are extrapolated by mean or median values for each parameter. I select the best neural networks in terms of validation accuracy (coefficient of determination and mean absolute error). It turns out that the most accurate results are delivered by multilayer networks (6 layers) with recurrent layers. Neural network types are selected by trial and error. The algorithms reached an accuracy of 78% in terms of coefficient of determination and 6.5 in terms of mean absolute error. I also list empirically determined features of neural networks that increase accuracy for the task of chronological age prediction. Obtained results can be considered as an approximation of human biological age. Parameters in training datasets are selected the most broadly: all potentially relevant parameters (926) from the NHANES database are used. Although the networks are trained on the incomplete data, they demonstrated the ability to make reasonable predictions (with R2 > 0.7) based on no more than 100 biochemical indicators. Hence, for practical reasons the full data on each of 926 indicators are not required, although the analysis of the impact of each indicator is useful for theoretical developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Source own results. Created via Keras

Fig. 2

Source own results. Created via Matplotlib

Fig. 3

Source own results. Created via Matplotlib

Fig. 4

Source own results. Created via Matplotlib

Similar content being viewed by others

Data availability

The author confirms that the data supporting the findings of this study are available within the article and in open databases.

Code availability

The code is available upon request.

Notes

  1. The truth of this statement is not obvious for functions representing complex nonlinear non-monotonous connections and must be proved separately.

  2. Strictly speaking, must hold the following: \(Var\left(b\right)\le 2(\sum {cov}_{{y}_{k},b}\frac{\partial N\left(\bar{x}\right)}{\partial {y}_{k}}-\sum {cov}_{{y}_{k},c}\frac{\partial N\left(\bar{x}\right)}{\partial {y}_{k}})+Var(c)\). But the difference of covariances may be difficult to estimate. Since \(2(\sum {cov}_{{y}_{k},b}\frac{\partial N\left(\bar{x}\right)}{\partial {y}_{k}}-\sum {cov}_{{y}_{k},c}\frac{\partial N\left(\bar{x}\right)}{\partial {y}_{k}})\) should always be positive, \(Var\left(b\right)\le 2(\sum {cov}_{{y}_{k},b}\frac{\partial N\left(\bar{x}\right)}{\partial {y}_{k}}-\sum {cov}_{{y}_{k},c}\frac{\partial N\left(\bar{x}\right)}{\partial {y}_{k}})+Var(c)\) holds always when \(Var\left(b\right)\le Var(c)\) independently of the exact value of the difference of covariances.

  3. Also, if Var(ε) is negligibly small (almost all variance of biomarkers is due to aging), then the predictions of neural networks will be almost equal to biological age.

References

  • Abiodun OI, Jantan A, Omolara AE, Dada KV, Mohamed NA, Arshad H (2018) State-of-the-art in artificial neural network applications: a survey. Heliyon 4(11):e00938

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahadi S, Zhou W, Rose SMSF, Sailani MR, Contrepois K, Avina M, et al (2020) Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat Med 26(1):83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88(2):557–579

    Article  CAS  PubMed  Google Scholar 

  • Bobrov E, Georgievskaya A, Kiselev K, Sevastopolsky A, Zhavoronkov A, Gurov S, et al (2018) PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging. Aging (Albany NY) 10(11):3249

    Article  Google Scholar 

  • Bürkle A, Moreno-Villanueva M, Bernhard J, Blasco M, Zondag G, Hoeijmakers JH, Gonos ES, et al (2015) MARK-AGE biomarkers of ageing. Mech Ageing Dev 151:2–12

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Larson MG, McCabe EL, Murabito JM, Rhee EP, Ho JE, et al (2015) Distinct metabolomic signatures are associated with longevity in humans. Nat Commun 6(1):1–10

    CAS  Google Scholar 

  • Christiansen L, Lenart A, Tan Q, Vaupel JW, Aviv A, McGue M, Christensen K (2016) DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15(1):149–154

    Article  CAS  PubMed  Google Scholar 

  • Cohen AA, Morissette-Thomas V, Ferrucci L, Fried LP (2016) Deep biomarkers of aging are population-dependent. Aging (Albany NY) 8(9):2253

    Article  Google Scholar 

  • Cole JH et al (2017) Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 163:115–124

    Article  PubMed  Google Scholar 

  • Galkin F et al (2018) Human microbiome aging clocks based on deep learning and tandem of permutation feature importance and accumulated local effects. New Results. https://doi.org/10.1101/507780

    Article  Google Scholar 

  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680.

  • Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49(2):359–367

    Article  CAS  PubMed  Google Scholar 

  • Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):3156

    Article  Google Scholar 

  • Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19(6):371

    Article  CAS  PubMed  Google Scholar 

  • Horvath S, Erhart W, Brosch M, Ammerpohl O, von Schönfels W, Ahrens M, et al (2014) Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci 111(43):15538–15543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath S, Pirazzini C, Bacalini MG, Gentilini D, Di Blasio AM, Delledonne M, et al (2015) Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 7(12):1159

    Article  CAS  Google Scholar 

  • Enroth S, Enroth SB, Johansson Å, Gyllensten U (2015) Protein profiling reveals consequences of lifestyle choices on predicted biological aging. Sci Rep 5:17282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H et al (2017) Fully automated deep learning system for bone age assessment. J Digit Imaging 30:427–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YH, Kim SR, Yu HT, Han YD, Kim JH, Kim SH, et al (2019) Senescent T cells predict the development of hyperglycemia in humans. Diabetes 68(1):156–162

    Article  CAS  PubMed  Google Scholar 

  • Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16(6):321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mamoshina P, Vieira A, Putin E, Zhavoronkov A (2016) Applications of deep learning in biomedicine. Mol Pharm 13(5):1445–1454

    Article  CAS  PubMed  Google Scholar 

  • Mamoshina P, Kochetov K, Putin E, Cortese F, Aliper A, Lee WS, et al (2018a) Population specific biomarkers of human aging: a big data study using South Korean, Canadian, and Eastern European patient populations. J Gerontol 73(11):1482–1490

    Article  Google Scholar 

  • Mamoshina P, Volosnikova M, Ozerov IV, Putin E, Skibina E, Cortese F, Zhavoronkov A (2018b) Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification. Front Genet 9:242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al (2015) DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16(1):25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCauley BS, Dang W (2014) Histone methylation and aging: lessons learned from model systems. Biochim Biophys Acta 1839(12):1454–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskalev A (ed) (2019) Biomarkers of human aging. Springer, Berlin

    Google Scholar 

  • Pal S, Tyler JK (2016) Epigenetics and aging. Sci Adv 2(7):e1600584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park J, Cho B, Kwon H, Lee C (2009) Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men. Arch Gerontol Geriatr 49(1):7–12

    Article  PubMed  Google Scholar 

  • Pastur-Romay LA, Cedron F, Pazos A, Porto-Pazos AB (2016) Deep artificial neural networks and neuromorphic chips for big data analysis: pharmaceutical and bioinformatics applications. Int J Mol Sci 17(8):1313

    Article  PubMed Central  Google Scholar 

  • Pyrkov TV, Slipensky K, Barg M, Kondrashin A, Zhurov B, Zenin A, et al (2018) Extracting biological age from biomedical data via deep learning: too much of a good thing? Sci Rep 8(1):1–11

    Article  CAS  Google Scholar 

  • Putin E, Mamoshina P, Aliper A, Korzinkin M, Moskalev A, Kolosov A, Ostrovskiy A, Cantor C, Vijg J, Zhavoronkov A (2016) Deep biomarkers of human aging: application of deep neural networks to biomarker development. Aging 8(5):1021–1033. https://doi.org/10.18632/aging.100968.PMC4931851.PMID27191382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quach A, Levine ME, Tanaka T, Lu AT, Chen BH, Ferrucci L, et al (2017) Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY) 9(2):419

    Article  CAS  Google Scholar 

  • Sen P, Shah PP, Nativio R, Berger SL (2016) Epigenetic mechanisms of longevity and aging. Cell 166(4):822–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    Google Scholar 

  • Zhavoronkov A, Mamoshina P (2019) Deep aging clocks: the emergence of AI-based biomarkers of aging and longevity. Trends Pharmacol Sci 40(8):546–549

    Article  CAS  PubMed  Google Scholar 

  • Zhavoronkov A, Mamoshina P, Vanhaelen Q, Scheibye-Knudsen M, Moskalev A, Aliper A (2019) Artificial intelligence for aging and longevity research: recent advances and perspectives. Ageing Res Rev 49:49–66

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Anton Piankov for checking mathematical derivations and for his comments which made them more rigorous and understandable.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor Kendiukhov.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kendiukhov, I. AI-based investigation of molecular biomarkers of longevity. Biogerontology 21, 731–744 (2020). https://doi.org/10.1007/s10522-020-09890-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-020-09890-y

Keywords

Navigation