Skip to main content

Advertisement

Log in

Current and Emerging Robot-Assisted Endovascular Catheterization Technologies: A Review

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endovascular techniques have been embraced as a minimally-invasive treatment approach within different disciplines of interventional radiology and cardiology. The current practice of endovascular procedures, however, is limited by a number of factors including exposure to high doses of X-ray radiation, limited 3D imaging, and lack of contact force sensing from the endovascular tools and the vascular anatomy. More recently, advances in steerable catheters and development of master/slave robots have aimed to improve these practices by removing the operator from the radiation source and increasing the precision and stability of catheter motion with added degrees-of-freedom. Despite their increased application and a growing research interest in this area, many such systems have been designed without considering the natural manipulation skills and ergonomic preferences of the operators. Existing studies on tool interactions and natural manipulation skills of the operators are limited. In this manuscript, new technical developments in different aspects of robotic endovascular intervention including catheter instrumentation, intra-operative imaging and navigation techniques, as well as master/slave based robotic catheterization platforms are reviewed. We further address emerging trends and new research opportunities towards more widespread clinical acceptance of robotically assisted endovascular technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ahmidi, N., G. Hager, L. Ishii, G. Fichtinger, G. Gallia, and M. Ishii. Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2010, pp. 295–302, 2010.

  2. Alderliesten, T., M. K. Konings, and W. J. Niessen. Modeling friction, intrinsic curvature, and rotation of guide wires for simulation of minimally invasive vascular interventions. IEEE Trans. Biomed. Eng. 54:29–38, 2007.

    Article  PubMed  Google Scholar 

  3. Allaqaband, S., J. Solis, S. Kazemi, and T. Bajwa. Endovascular treatment of peripheral vascular disease. Curr. Probl. Cardiol. 31:711–760, 2006.

    Article  PubMed  Google Scholar 

  4. Antoniou, G. A., C. V. Riga, E. K. Mayer, N. J. W. Cheshire, and C. D. Bicknell. Clinical applications of robotic technology in vascular and endovascular surgery. J. Vasc. Surg. 53:493–499, 2011.

    Article  PubMed  Google Scholar 

  5. Arai, F., R. Fujimura, T. Fukuda, and M. Negoro. New catheter driving method using linear stepping mechanism for intravascular neurosurgery. In: IEEE International Conference on Robotics and Automation, pp. 2944–2949, 2002.

  6. Argall, B. D., S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from demonstration. Robot. Auton. Syst. 57:469–483, 2009.

    Article  Google Scholar 

  7. Baert, S. A. M., M. A. Viergever, and W. J. Niessen. Guide-wire tracking during endovascular interventions. IEEE Trans. Med. Imaging 22:965–972, 2003.

    Article  PubMed  Google Scholar 

  8. Bicknell, C. D., N. J. W. Cheshire, C. V. Riga, P. Bourke, J. H. N. Wolfe, R. G. J. Gibbs, M. P. Jenkins, and M. Hamady. Treatment of complex aneurysmal disease with fenestrated and branched stent grafts. Eur. J. Vasc. Endovasc. Surg. 37:175–181, 2009.

    Article  CAS  PubMed  Google Scholar 

  9. Bismuth, J., E. Kashef, N. Cheshire, and A. B. Lumsden. Feasibility and safety of remote endovascular catheter navigation in a porcine model. J. Endovasc. Ther. 18:243–249, 2011.

    Article  PubMed  Google Scholar 

  10. Bock, M., and F. K. Wacker. MR-guided intravascular interventions: techniques and applications. J. Magn. Reson. Imaging 27:326–338, 2008.

    Article  PubMed  Google Scholar 

  11. Camarillo, D. B., C. F. Milne, C. R. Carlson, M. R. Zinn, and J. K. Salisbury. Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans. Robot. 24:1262–1273, 2008.

    Article  Google Scholar 

  12. Carrell, T. W. G., B. Modarai, J. R. I. Brown, and G. P. Penney. Feasibility and limitations of an automated 2D–3D rigid image registration system for complex endovascular aortic procedures. J. Endovasc. Ther. 17:527–533, 2010.

    Article  PubMed  Google Scholar 

  13. Cercenelli, L., E. Marcelli, and G. Plicchi. Initial experience with a telerobotic system to remotely navigate and automatically reposition standard steerable EP catheters. ASAIO J. 53:523, 2007.

    Article  PubMed  Google Scholar 

  14. Chen, T., Y. Wang, P. Durlak, and D. Comaniciu. Real time assistance for stent positioning and assessment by self-initialized tracking. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012, pp. 405–413, 2012.

  15. Cheng, I., A. Firouzmanesh, A. Leleve, et al. Enhanced segmentation and skeletonization for endovascular surgical planning. In: Proceedings of SPIE, p. 83162W, 2012.

  16. Coles, T., D. Meglan, and N. John. The role of haptics in medical training simulators: a survey of the state-of-the-art. IEEE Trans. Haptics 4:51–66, 2011.

    Article  Google Scholar 

  17. Condino, S., V. Ferrari, C. Freschi, A. Alberti, R. Berchiolli, F. Mosca, and M. Ferrari. Electromagnetic navigation platform for endovascular surgery: how to develop sensorized catheters and guidewires. Int. J. Med. Robot. 8:300–310, 2012.

    Article  CAS  PubMed  Google Scholar 

  18. Dawson, D. L., J. Meyer, E. S. Lee, and W. C. Pevec. Training with simulation improves residents’ endovascular procedure skills. J. Vasc. Surg. 45:149–154, 2007.

    Article  PubMed  Google Scholar 

  19. Dayal, R., P. L. Faries, S. C. Lin, et al. Computer simulation as a component of catheter-based training. J. Vasc. Surg. 40:1112–1117, 2004.

    Article  PubMed  Google Scholar 

  20. Demirci, S., M. Baust, O. Kutter, F. Manstad-Hulaas, H.-H. Eckstein, and N. Navab. Disocclusion-based 2D–3D registration for aortic interventions. Comput. Biol. Med. 43:312–322, 2013.

    Article  PubMed  Google Scholar 

  21. Demirci, S., A. Bigdelou, L. Wang, C. Wachinger, M. Baust, R. Tibrewal, R. Ghotbi, H.-H. Eckstein, and N. Navab. 3D stent recovery from one X-ray projection. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2011, pp. 178–185, 2011.

  22. Desender, L., Z. Rancic, R. Aggarwal, J. Duchateau, M. Glenck, M. Lachat, F. Vermassen, and I. Van Herzeele. Patient-specific rehearsal prior to EVAR: a pilot study. Eur. J. Vasc. Endovasc. Surg. 45:639–647, 2013.

    Article  CAS  PubMed  Google Scholar 

  23. Di Biase, L., T. S. Fahmy, D. Patel, et al. Remote magnetic navigation: human experience in pulmonary vein ablation. J. Am. Coll. Cardiol. 50:868–874, 2007.

    Article  PubMed  Google Scholar 

  24. Di Biase, L., Y. A. N. Wang, R. Horton, et al. Ablation of atrial fibrillation utilizing robotic catheter navigation in comparison to manual navigation and ablation: single-center experience. J. Cardiovasc. Electrophysiol. 20:1328–1335, 2009.

    Article  PubMed  Google Scholar 

  25. Dore, A., G. Smoljkic, E. V. Poorten, M. Sette, J. V. Sloten, and G.-Z. Yang. Catheter navigation based on probabilistic fusion of electromagnetic tracking and physically-based simulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3806–3811, 2012.

  26. Eide, K. R., A. Ødegård, H. O. Myhre, S. Lydersen, S. Hatlinghus, and O. Haraldseth. DynaCT during EVAR—a comparison with multidetector CT. Eur. J. Vasc. Endovasc. Surg. 37:23–30, 2009.

    Article  CAS  PubMed  Google Scholar 

  27. Ernst, S., F. Ouyang, C. Linder, et al. Initial experience with remote catheter ablation using a novel magnetic navigation system magnetic remote catheter ablation. Circulation 109:1472–1475, 2004.

    Article  PubMed  Google Scholar 

  28. Fang, B. K., M. S. Ju, and C. C. K. Lin. A new approach to develop ionic polymer-metal composites (IPMC) actuator: fabrication and control for active catheter systems. Sensors Actuators A Phys. 137:321–329, 2007.

    Article  CAS  Google Scholar 

  29. Farooq, M. U., A. Khasnis, A. Majid, and M. Y. Kassab. The role of optical coherence tomography in vascular medicine. Vasc. Med. 14:63–71, 2009.

    Article  PubMed  Google Scholar 

  30. Feng, W., S. Guo, C. Chi, H. Wang, K. Wang, and X. Ye. Realization of a catheter driving mechanism with micro tactile sensor for intravascular neurosurgery. In: IEEE International Conference on Robotics and Biomimetics, pp. 1628–1633, 2006.

  31. Franken, E., P. Rongen, M. van Almsick, and B. ter Haar Romeny. Detection of electrophysiology catheters in noisy fluoroscopy images. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006, pp. 25–32, 2006.

  32. Fu, Y., A. Gao, H. Liu, K. Li, and Z. Liang. Development of a novel robotic catheter system for endovascular minimally invasive surgery. In: IEEE/ICME International Conference on Complex Medical Engineering, pp. 400–405, 2011.

  33. Fu, Y., H. Liu, W. Huang, S. Wang, and Z. Liang. Steerable catheters in minimally invasive vascular surgery. Int. J. Med. Robot. 5:381–391, 2009.

    Article  PubMed  Google Scholar 

  34. Gang, E. S., B. L. Nguyen, Y. Shachar, et al. Dynamically shaped magnetic fields: initial animal validation of a new remote electrophysiology catheter guidance and control system. Circ. Arrhythm. Electrophysiol. 4:770–777, 2011.

    Article  PubMed  Google Scholar 

  35. Ganji, Y., F. Janabi-Sharifi, and A. N. Cheema. Robot-assisted catheter manipulation for intracardiac navigation. Int. J. Comput. Assist. Radiol. Surg. 4:307–315, 2009.

    Article  PubMed  Google Scholar 

  36. Ghembaza, M. B. E. K., and Y. Amirat. Interactive navigation control with haptic rendering for endovascular treatment. In: IEEE Conference on Robotics, Automation and Mechatronics, Vol. 61, pp. 60–64, 2004.

  37. Granada, J. F., J. A. Delgado, M. P. Uribe, A. Fernandez, G. Blanco, M. B. Leon, and G. Weisz. First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. JACC Cardiovasc. Interv. 4:460–465, 2011.

    Article  PubMed  Google Scholar 

  38. Guo, S., H. Kondo, J. Wang, J. Guo, and T. Tamiya. A new catheter operating system for medical applications. In: International Conference on Complex Medical Engineering, pp. 82–86, 2007.

  39. Hausegger, K. A., P. Schedlbauer, H. A. Deutschmann, and K. Tiesenhausen. Complications in endoluminal repair of abdominal aortic aneurysms. Eur. J. Radiol. 39:22–33, 2001.

    Article  CAS  PubMed  Google Scholar 

  40. Heibel, T. H., B. Glocker, M. Groher, N. Paragios, N. Komodakis, and N. Navab. Discrete tracking of parametrized curves. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1754–1761, 2009.

  41. Hoffmann, M., A. Brost, C. Jakob, F. Bourier, M. Koch, K. Kurzidim, J. Hornegger, and N. Strobel. Semi-automatic catheter reconstruction from two views. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012, pp. 584–591, 2012.

  42. Hwang, C.-W., D. Wu, and E. R. Edelman. Physiological transport forces govern drug distribution for stent-based delivery. Circulation 104:600–605, 2001.

    Article  CAS  PubMed  Google Scholar 

  43. Ikeda, S., F. Arai, T. Fukuda, M. Negoro, K. Irie, and I. Takahashi. Patient-specific neurovascular simulator for evaluating the performance of medical robots and instruments. In: IEEE International Conference on Robotics and Automation, pp. 625–630, 2006.

  44. Ikuta, K., H. Ichikawa, K. Suzuki, and D. Yajima. Multi-degree of freedom hydraulic pressure driven safety active catheter. In: IEEE International Conference on Robotics and Automation, pp. 4161–4166, 2006.

  45. Iyengar, S., and W. A. Gray. Use of magnetic guidewire navigation in the treatment of lower extremity peripheral vascular disease: report of the first human clinical experience. Catheter Cardiovasc. Interv. 73:739–744, 2009.

    Article  PubMed  Google Scholar 

  46. Jayender, J., M. Azizian, and R. V. Patel. Autonomous image-guided robot-assisted active catheter insertion. IEEE Trans. Robot. 24:858–871, 2008.

    Article  Google Scholar 

  47. Jayender, J., and R. V. Patel. Wave variables based bilateral teleoperation of an active catheter. In: 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 27–32, 2008.

  48. Jayender, J., R. V. Patel, and S. Nikumb. Robot-assisted catheter insertion using hybrid impedance control. In: IEEE International Conference on Robotics and Automation, pp. 607–612, 2006.

  49. Jongbloed, M. R. M., M. J. Schalij, K. Zeppenfeld, P. V. Oemrawsingh, E. E. van der Wall, and J. J. Bax. Clinical applications of intracardiac echocardiography in interventional procedures. Heart 91:981–990, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Kesner, S. B., and R. D. Howe. Force control of flexible catheter robots for beating heart surgery. In: IEEE International Conference on Robotics and Automation, pp. 1589–1594, 2011.

  51. Klein, L. W., D. L. Miller, S. Balter, W. Laskey, D. Haines, A. Norbash, M. A. Mauro, and J. A. Goldstein. Occupational health hazards in the interventional laboratory: time for a safer environment. Catheter. Cardiovasc. Interv. 73:432–438, 2009.

    Article  PubMed  Google Scholar 

  52. Knecht, S., H. Skali, M. D. O’Neill, et al. Computed tomography-fluoroscopy overlay evaluation during catheter ablation of left atrial arrhythmia. Europace 10:931–938, 2008.

    Article  PubMed  Google Scholar 

  53. Kolbitsch, C., C. Prieto, C. Buerger, J. Harrison, R. Razavi, J. Smink, and T. Schaeffter. Prospective high-resolution respiratory-resolved whole-heart MRI for image-guided cardiovascular interventions. Magn. Reson. Med. 68:205–213, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Kragic, D., P. Marayong, M. Li, A. M. Okamura, and G. D. Hager. Human–machine collaborative systems for microsurgical applications. Int. J. Robot. Res. 24:731–741, 2005.

    Article  Google Scholar 

  55. Lee, S.-L., K.-W. Kwok, L. Wang, C. Riga, C. Bicknell, and G.-Z. Yang. Motion adapted catheter navigation with real-time instantiation and improved visualisation. J. Robot. Surg. 7:251–260, 2013.

    Article  Google Scholar 

  56. Lee, S.-L., C. Riga, L. Crowie, M. Hamady, N. Cheshire, and G.-Z. Yang. An instantiability index for intra-operative tracking of 3D anatomy and interventional devices. In: Medical Image Computing and Computer-Assisted Intervention, pp. 49–56, 2011.

  57. Leong, J., M. Nicolaou, L. Atallah, G. Mylonas, A. Darzi, and G. Z. Yang. HMM assessment of quality of movement trajectory in laparoscopic surgery. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006, pp. 752–759, 2006.

  58. Li, Z., C.-K. Chui, Y. Cai, J. H. Anderson, and W. L. Nowinski. Interactive catheter shape modeling in interventional radiology simulation. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2011, pp. 457–464, 2011.

  59. Lim, G., K. Park, M. Sugihara, K. Minami, and M. Esashi. Future of active catheters. Sensors Actuators A Phys. 56:113–121, 1996.

    Article  CAS  Google Scholar 

  60. Lin, P. H., R. L. Bush, E. K. Peden, W. Zhou, M. Guerrero, E. A. Henao, P. Kougias, I. Mohiuddin, and A. B. Lumsden. Carotid artery stenting with neuroprotection: assessing the learning curve and treatment outcome. Am. J. Surg. 190:855–863, 2005.

    Article  Google Scholar 

  61. Lloyd-Jones, D., R. J. Adams, T. M. Brown, et al. Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:948–954, 2010.

    Article  PubMed  Google Scholar 

  62. Lovegrove, R. E., M. Javid, T. R. Magee, and R. B. Galland. A meta-analysis of 21 178 patients undergoing open or endovascular repair of abdominal aortic aneurysm. Br. J. Surg. 95:677–684, 2008.

    Article  CAS  PubMed  Google Scholar 

  63. Macdonald, S., R. Lee, R. Williams, and G. Stansby. Towards safer carotid artery stenting: a scoring system for anatomic suitability. Stroke 40:1698–1703, 2009.

    Article  PubMed  Google Scholar 

  64. Mallery, J. A., J. M. Tobis, J. Griffith, J. Gessert, M. McRae, O. Moussabeck, M. Bessen, M. Moriuchi, and W. L. Henry. Assessment of normal and atherosclerotic arterial wall thickness with an intravascular ultrasound imaging catheter. Am. Heart J. 119:1392–1400, 1990.

    Article  CAS  PubMed  Google Scholar 

  65. Manstad-Hulaas, F., G. A. Tangen, T. Dahl, T. A. N. Hernes, and P. Aadahl. Three-dimensional electromagnetic navigation vs. fluoroscopy for endovascular aneurysm repair: a prospective feasibility study in patients. J. Endovasc. Ther. 19:70–78, 2012.

    Article  PubMed  Google Scholar 

  66. Marcelli, E., L. Cercenelli, and G. Plicchi. A novel telerobotic system to remotely navigate standard electrophysiology catheters. In: Computers in Cardiology, pp. 137–140, 2008.

  67. Mayer, H., F. Gomez, D. Wierstra, I. Nagy, A. Knoll, and J. Schmidhuber. A system for robotic heart surgery that learns to tie knots using recurrent neural networks. Adv. Robot. 22:1521–1537, 2008.

    Article  Google Scholar 

  68. Meiß, T., C. Budelmann, T. A. Kern, S. Sindlinger, C. Minamisava, and R. Werthschutzky. Intravascular palpation and haptic feedback during angioplasty. In: Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems., pp. 380–381, 2009.

  69. Mendizabal-Ruiz, E. G., and I. A. Kakadiaris. Probabilistic segmentation of the lumen from intravascular ultrasound radio frequency data. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012, pp. 454–461, 2012.

  70. Moraes, M., D. A. C. Cardenas, and S. S. Furuie. Automatic coronary wall segmentation in intravascular ultrasound images using binary morphological reconstruction. Ultrasound Med. Biol. 37:1486–1499, 2011.

    Article  PubMed  Google Scholar 

  71. Muller, L., M. Saeed, M. W. Wilson, and S. W. Hetts. Remote control catheter navigation: options for guidance under MRI. J. Cardiovasc. Magn. Reson. 14:33, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Neequaye, S. K., R. Aggarwal, I. Van Herzeele, A. Darzi, and N. J. Cheshire. Endovascular skills training and assessment. J. Vasc. Surg. 46:1055–1064, 2007.

    Article  PubMed  Google Scholar 

  73. Okumura, Y., S. B. Johnson, T. J. Bunch, B. D. Henz, C. J. O’Brien, and D. L. Packer. A systematical analysis of in vivo contact forces on virtual catheter tip/tissue surface contact during cardiac mapping and intervention. J. Cardiovasc. Electrophysiol. 19:632–640, 2008.

    Article  PubMed  Google Scholar 

  74. Padoy, N., T. Blum, S. A. Ahmadi, H. Feussner, M. O. Berger, and N. Navab. Statistical modeling and recognition of surgical workflow. Med. Image Anal. 16:632–641, 2010.

    Article  PubMed  Google Scholar 

  75. Padoy, N., and G. D. Hager. Human–machine collaborative surgery using learned models. In: IEEE International Conference on Robotics and Automation, pp. 5285–5292, 2011.

  76. Park, J. W., J. Choi, H. N. Pak, S. J. Song, J. C. Lee, Y. Park, S. M. Shin, and K. Sun. Development of a force-reflecting robotic platform for cardiac catheter navigation. Artif. Organs 34:1034–1039, 2010.

    Article  PubMed  Google Scholar 

  77. Park, J. W., J. Choi, Y. Park, and K. Sun. Haptic virtual fixture for robotic cardiac catheter navigation. Artif. Organs 35:1127–1131, 2011.

    Article  PubMed  Google Scholar 

  78. Pauly, O., H. Heibel, and N. Navab. A machine learning approach for deformable guide-wire tracking in fluoroscopic sequences. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2010, pp. 343–350, 2010.

  79. Payne, C. J., H. Rafii-Tari, and G.-Z. Yang. A force feedback system for endovascular catheterisation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1298–1304, 2012.

  80. Polygerinos, P., L. D. Seneviratne, R. Razavi, T. Schaeffter, and K. Althoefer. Triaxial catheter-tip force sensor for MRI-guided cardiac procedures. IEEE ASME Trans. Mechatron. 18:386–396, 2013.

    Article  Google Scholar 

  81. Polygerinos, P., D. Zbyszewski, T. Schaeffter, R. Razavi, L. D. Seneviratne, and K. Althoefer. MRI-compatible fiber-optic force sensors for catheterization procedures. IEEE Sens. J. 10:1598–1608, 2010.

    Article  Google Scholar 

  82. Rafii-Tari, H., J. Liu, S.-L. Lee, C. Bicknell, and G.-Z. Yang. Learning-based modeling of endovascular navigation for collaborative robotic catheterization. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2013, pp. 369–377, 2013.

  83. Rafii-Tari, H., C. Payne, C. Riga, C. Bicknell, S.-L. Lee, and G.-Z. Yang. Assessment of navigation cues with proximal force sensing during endovascular catheterization. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012, pp. 560–567, 2012.

  84. Ramcharitar, S., M. S. Patterson, R. J. Van Geuns, C. Van Meighem, and P. W. Serruys. Technology insight: magnetic navigation in coronary interventions. Nat. Clin. Pract. Cardiovasc. Med. 5:148–156, 2008.

    Article  PubMed  Google Scholar 

  85. Reddy, V. Y., P. Neuzil, Z. J. Malchano, R. Vijaykumar, R. Cury, S. Abbara, J. Weichet, C. D. McPherson, and J. N. Ruskin. View-synchronized robotic image-guided therapy for atrial fibrillation ablation. Circulation 115:2705–2714, 2007.

    Article  PubMed  Google Scholar 

  86. Reiley, C., and G. Hager. Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009, pp. 435–442, 2009.

  87. Reiley, C. E., H. C. Lin, D. D. Yuh, and G. D. Hager. Review of methods for objective surgical skill evaluation. Surg. Endosc. 25:356–366, 2011.

    Article  PubMed  Google Scholar 

  88. Reiley, C. E., E. Plaku, and G. D. Hager. Motion generation of robotic surgical tasks: learning from expert demonstrations. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 967–970, 2010.

  89. Rhode, K. S., M. Sermesant, D. Brogan, et al. A system for real-time XMR guided cardiovascular intervention. IEEE Trans. Med. Imaging 24:1428–1440, 2005.

    Article  PubMed  Google Scholar 

  90. Riga, C., C. Bicknell, N. Cheshire, and M. Hamady. Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair. J. Endovasc. Ther. 16:149–153, 2009.

    Article  PubMed  Google Scholar 

  91. Riga, C. V., C. D. Bicknell, A. Rolls, N. J. Cheshire, and M. S. Hamady. Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the magellan system. J. Vasc. Interv. Radiol. 24:191–196, 2013.

    Article  PubMed  Google Scholar 

  92. Rolls, A. E., C. V. Riga, C. D. Bicknell, D. V. Stoyanov, C. V. Shah, I. Van Herzeele, M. Hamady, and N. J. Cheshire. A pilot study of video-motion analysis in endovascular surgery: development of real-time discriminatory skill metrics. Eur. J. Vasc. Endovasc. Surg. 45:509–515, 2013.

    Article  CAS  PubMed  Google Scholar 

  93. Rosen, J., J. D. Brown, L. Chang, M. N. Sinanan, and B. Hannaford. Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete markov model. IEEE Trans. Biomed. Eng. 53:399–413, 2006.

    Article  PubMed  Google Scholar 

  94. Rudnick, M. R., S. Goldfarb, L. Wexler, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int. 47:254–261, 1995.

    Article  CAS  PubMed  Google Scholar 

  95. Saliba, W., V. Y. Reddy, O. Wazni, et al. Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J. Am. Coll. Cardiol. 51:2407–2411, 2008.

    Article  PubMed  Google Scholar 

  96. Schirra, C. O., S. Weiss, S. Krueger, D. Caulfield, S. F. Pedersen, R. Razavi, S. Kozerke, and T. Schaeffter. Accelerated 3D catheter visualization from triplanar MR projection images. Magn. Reson. Med. 64:167–176, 2010.

    Article  PubMed  Google Scholar 

  97. Shi, C., C. Tercero, S. Ikeda, K. Ooe, T. Fukuda, K. Komori, and K. Yamamoto. In vitro three dimensional aortic vasculature modeling based on sensor fusion between intravascular ultrasound and magnetic tracker. Int. J. Med. Robot. 8:291–299, 2012.

    Article  PubMed  Google Scholar 

  98. Srimathveeravalli, G., T. Kesavadas, and X. Li. Design and fabrication of a robotic mechanism for remote steering and positioning of interventional devices. Int. J. Med. Robot. 6:160–170, 2010.

    PubMed  Google Scholar 

  99. Strandman, C., L. Smith, L. Tenerz, and B. Hök. A production process of silicon sensor elements for a fibre-optic pressure sensor. Sensors Actuators A Phys. 63:69–74, 1997.

    Article  CAS  Google Scholar 

  100. Tanimoto, M., F. Arai, T. Fukuda, K. Itoigawa, M. Hashimoto, I. Takahashi, and M. Negoro. Telesurgery system for intravascular neurosurgery. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2000, pp. 29–39, 2000.

  101. Tanimoto, M., F. Arai, T. Fukuda, H. Iwata, K. Itoigawa, Y. Gotoh, M. Hashimoto, and M. Negoro. Micro force sensor for intravascular neurosurgery and in vivo experiment. In: The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, pp. 504–509, 1998.

  102. Tavallaei, M. A., Y. Thakur, S. Haider, and M. Drangova. A magnetic-resonance-imaging-compatible remote catheter navigation system. IEEE Trans. Biomed. Eng. 60:899–905, 2013.

    Article  PubMed  Google Scholar 

  103. Tercero, C., S. Ikeda, T. Uchiyama, et al. Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery. Int. J. Med. Robot. 3:52–58, 2007.

    Article  CAS  PubMed  Google Scholar 

  104. Tercero, C., H. Kodama, C. Shi, et al. Technical skills measurement based on a cyber-physical system for endovascular surgery simulation. Int. J. Med. Robot. 9(3):e25–e33, 2012.

    Article  PubMed  Google Scholar 

  105. Thakur, Y., J. S. Bax, D. W. Holdsworth, and M. Drangova. Design and performance evaluation of a remote catheter navigation system. IEEE Trans. Biomed. Eng. 56:1901–1908, 2009.

    Article  PubMed  Google Scholar 

  106. Thakur, Y., D. W. Holdsworth, and M. Drangova. Characterization of catheter dynamics during percutaneous transluminal catheter procedures. IEEE Trans. Biomed. Eng. 56:2140–2143, 2009.

    Article  PubMed  Google Scholar 

  107. Tohyama, O., M. Kohashi, M. Sugihara, and H. Itoh. A fiber-optic pressure microsensor for biomedical applications. Sensors Actuators A Phys. 66:150–154, 1998.

    Article  CAS  Google Scholar 

  108. Tzifa, A., G. A. Krombach, N. Krämer, et al. Magnetic resonance-guided cardiac interventions using magnetic resonance-compatible devices a preclinical study and first-in-man congenital interventions. Circ. Cardiovasc. Interv. 3:585–592, 2010.

    Article  PubMed  Google Scholar 

  109. Van Walsum, T., S. A. M. Baert, and W. J. Niessen. Guide wire reconstruction and visualization in 3DRA using monoplane fluoroscopic imaging. IEEE Trans. Med. Imaging 24:612–623, 2005.

    Article  PubMed  Google Scholar 

  110. Wang, J., T. Ohya, H. Liao, I. Sakuma, T. Wang, I. Tohnai, and T. Iwai. Intravascular catheter navigation using path planning and virtual visual feedback for oral cancer treatment. Int. J. Med. Robot. 7:214–224, 2011.

    Article  PubMed  Google Scholar 

  111. Wang, P., T. Chen, O. Ecabert, S. Prummer, M. Ostermeier, and D. Comaniciu. Image-Based Device Tracking for the Co-registration of Angiography and Intravascular Ultrasound Images. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2011, pp. 161–168, 2011.

  112. Wang, P., T. Chen, Y. Zhu, W. Zhang, S. K. Zhou, and D. Comaniciu. Robust guidewire tracking in fluoroscopy. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 691–698, 2009.

  113. Wang, T., D. Zhang, and L. Da. Remote-controlled vascular interventional surgery robot. Int. J. Med. Robot. 6:194–201, 2010.

    PubMed  Google Scholar 

  114. Wellens, H. J. J. Catheter ablation for cardiac arrhythmias. New Engl. J. Med. 351:1172–1174, 2004.

    Article  CAS  PubMed  Google Scholar 

  115. Willinek, W. A., M. von Falkenhausen, M. Born, J. Gieseke, T. Höller, T. Klockgether, H. J. Textor, H. H. Schild, and H. Urbach. Noninvasive detection of steno-occlusive disease of the supra-aortic arteries with three-dimensional contrast-enhanced magnetic resonance angiography a prospective, intra-individual comparative analysis with digital subtraction angiography. Stroke 36:38–43, 2005.

    Article  PubMed  Google Scholar 

  116. Yao, W., T. Schaeffter, L. Seneviratne, and K. Althoefer. Developing a magnetic resonance-compatible catheter for cardiac catheterization. J. Med. Devices 6:041002–041007, 2012.

    Article  Google Scholar 

  117. Yatziv, L., M. Chartouni, S. Datta, and G. Sapiro. Toward multiple catheters detection in fluoroscopic image guided interventions. IEEE Trans. Inf Technol. Biomed. 16:770–781, 2012.

    Article  PubMed  Google Scholar 

  118. Yokoyama, K., H. Nakagawa, D. C. Shah, et al. Novel contact force sensor incorporated in irrigated radiofrequency ablation catheter predicts lesion size and incidence of steam pop and thrombus. Circ. Arrhythm. Electrophysiol. 1:354–362, 2008.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Zhong Yang.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafii-Tari, H., Payne, C.J. & Yang, GZ. Current and Emerging Robot-Assisted Endovascular Catheterization Technologies: A Review. Ann Biomed Eng 42, 697–715 (2014). https://doi.org/10.1007/s10439-013-0946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0946-8

Keywords

Navigation