Skip to main content
Log in

Towards Non-thrombogenic Performance of Blood Recirculating Devices

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Implantable blood recirculating devices have provided life saving solutions to patients with severe cardiovascular diseases. However, common problems of hemolysis and thromboembolism remain an impediment to these devices. In this article, we present a brief review of the work by several groups in the field that has led to the development of new methodologies that may facilitate achieving the daunting goal of optimizing the thrombogenic performance of blood recirculating devices. The aim is to describe work which pertains to the interaction between flow-induced stresses and the blood constituents, and that supports the hypothesis that thromboembolism in prosthetic blood recirculating devices is initiated and maintained primarily by the non-physiological flow patterns and stresses that activate and enhance the aggregation of blood platelets, increasing the risk of thromboembolism and cardioembolic stroke. Such work includes state-of-the-art numerical and experimental tools used to elucidate flow-induced mechanisms leading to thromboembolism in prosthetic devices. Following the review, the paper describes several efforts conducted by some of the groups active in the field, and points to several directions that should be pursued in the future in order to achieve the goal for blood recirculating prosthetic devices becoming more effective as destination therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Aarts, P. A., S. A. van den Broek, G. W. Prins, G. D. Kuiken, J. J. Sixma, and R. M. Heethaar. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 8(6):819–824, 1988.

    PubMed  CAS  Google Scholar 

  2. Affeld, K., L. Goubergrits, U. Kertzscher, J. Gadischke, and A. Reininger. Mathematical model of platelet deposition under flow conditions. Int. J. Artif. Organs 27(8):699–708, 2004.

    PubMed  CAS  Google Scholar 

  3. Alemu, Y., and D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9):677–688, 2007.

    Article  PubMed  Google Scholar 

  4. AlMomani, T., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow. Ann. Biomed. Eng. 36(6):905–920, 2008.

    Article  PubMed  CAS  Google Scholar 

  5. Apel, J., F. Neudel, and H. Reul. Computational fluid dynamics and experimental validation of a microaxial blood pump. ASAIO J. 47(5):552–558, 2001.

    Article  PubMed  CAS  Google Scholar 

  6. Apel, J., R. Paul, S. Klaus, T. Siess, and H. Reul. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif. Organs 25(5):341–347, 2001.

    Article  PubMed  CAS  Google Scholar 

  7. Bachmann, C. H. G., G. Rosenberg, S. Deutsch, A. Fontaine, and J. M. Tarbell. Fluid dynamics of a pediatric ventricular assist device. Artif. Organs 24:362–372, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Bludszuweit, C. Model for a general mechanical blood damage prediction. Artif. Organs 19(7):583–589, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Bludszuweit, C. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump. Artif. Organs 19(7):590–596, 1995.

    Article  PubMed  CAS  Google Scholar 

  10. Bluestein, D. Stent-induced thromboembolism. Ann. Biomed. Eng. 28(3):346–350, 2000.

    Article  PubMed  CAS  Google Scholar 

  11. Bluestein, D., C. Gutierrez, M. Londono, and R. T. Schoephoerster. Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann. Biomed. Eng. 27(6):763–773, 1999.

    Article  PubMed  CAS  Google Scholar 

  12. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35(12):1533–1540, 2002.

    Article  PubMed  CAS  Google Scholar 

  13. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann. Biomed. Eng. 25(2):344–356, 1997.

    Article  PubMed  CAS  Google Scholar 

  14. Bluestein, D., L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Steady flow in an aneurysm model: correlation between fluid dynamics and blood platelet deposition. J. Biomech. Eng. 118(3):280–286, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Bluestein, D., E. Rambod, and M. Gharib. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Eng. 122(2):125–134, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Bluestein, D., W. Yin, K. Affeld, and J. Jesty. Flow-induced platelet activation in a mechanical heart valve. J. Heart Valve Dis. 13(3):501–508, 2004.

    PubMed  Google Scholar 

  17. Bluestein, M., and L. F. Mockros. Hemolytic effects of energy dissipation in flowing blood. Med. Biol. Eng. 7(1):1–16, 1969.

    Article  PubMed  CAS  Google Scholar 

  18. Buchanan, Jr., J. R., C. Kleinstreuer, and J. K. Comer. Rheological effects on pulsatile hemodynamics in a stenosed tube. Comput. Fluids 29(6):695–724, 2000.

    Article  Google Scholar 

  19. Burgreen, G. W., J. F. Antaki, and B. P. Griffith. A design improvement strategy for axial blood pumps using computational fluid dynamics. ASAIO J. 42(5):M354–M360, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Burgreen, G. W., J. F. Antaki, Z. J. Wu, and A. J. Holmes. Computational fluid dynamics as a development tool for rotary blood pumps. Artif. Organs 25(5):336–340, 2001.

    Article  PubMed  CAS  Google Scholar 

  21. Chandran, K. B., C. S. Lee, S. Aluri, K. C. Dellsperger, S. Schreck, and D. W. Wieting. Pressure distribution near the occluders and impact forces on the outlet struts of Bjork-Shiley convexo-concave valves during closing. J. Heart Valve Dis. 5(2):199–206, 1996.

    PubMed  CAS  Google Scholar 

  22. Cheng, R., Y. G. Lai, and K. B. Chandran. Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32(11):1471–1483, 2004.

    Article  PubMed  Google Scholar 

  23. Cheng, R., Y. G. Lai, and K. B. Chandran. Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J. Heart Valve Dis. 12(6):772–780, 2003.

    PubMed  Google Scholar 

  24. Cooper, B. T., B. N. Roszelle, T. C. Long, S. Deutsch, and K. B. Manning. The 12 cc Penn State pulsatile pediatric ventricular assist device: fluid dynamics associated with valve selection. J. Biomech. Eng. 130:041019, 2008.

    Article  PubMed  Google Scholar 

  25. Cooper, B. T., B. N. Roszelle, T. C. Long, S. Deutsch, and K. B. Manning. The influence of operational protocol on the fluid dynamics in the 12 cc Penn State pulsatile pediatric ventricular assist device: the effect of end-diastolic delay. Artif. Organs, 2010 (in press).

  26. David, T., S. Thomas, and P. G. Walker. Platelet deposition in stagnation point flow: an analytical and computational simulation. Med. Eng. Phys. 23(5):299–312, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. Deutsch, S., J. M. Tarbell, K. B. Manning, G. Rosenberg, and A. A. Fontaine. Experimental fluid mechanics of pulsatile artificial blood pumps. Annu. Rev. Fluid Mech. 38:65–86, 2006.

    Article  Google Scholar 

  28. Dowling, R. D., S. W. Etoch, K. A. Stevens, A. C. Johnson, and L. A., Gray, Jr. Current status of the AbioCor implantable replacement heart. Ann. Thorac. Surg. 71(3 Suppl):S147–S149, 2001; discussion S183–S144.

    Article  PubMed  CAS  Google Scholar 

  29. Dumont, K., J. Vierendeels, G. van Nooten, P. Verdonck, and D. Bluestein. Comparison of ATS open pivot valve and St Jude Regent Valve using a CFD model based on fluid-structure interaction. J. Biomech. Eng. 129(4), 2007.

  30. Eckstein, E. C., D. L. Bilsker, C. M. Waters, J. S. Kippenhan, and A. W. Tilles. Transport of platelets in flowing blood. Ann. N. Y. Acad. Sci. 516:442–452, 1987.

    Article  PubMed  CAS  Google Scholar 

  31. El-Banayosy, A., R. Korfer, L. Arusoglu, L. Kizner, M. Morshuis, H. Milting, G. Tenderich, O. Fey, and K. Minami. Device and patient management in a bridge-to-transplant setting. Ann. Thorac. Surg. 71(3 Suppl):S98–S102, 2001; discussion S114–S105.

    Article  PubMed  CAS  Google Scholar 

  32. Fogelson, A. L., and N. T. Wang. Platelet dense-granule centralization and the persistence of ADP secretion. Am. J. Physiol. 270(3 Pt 2):H1131–H1140, 1996.

    PubMed  CAS  Google Scholar 

  33. Garon, A., and M.-I. Farinas. Fast three-dimensional numerical hemolysis approximation. Artif. Organs 28(11):1016–1025, 2004.

    Article  PubMed  Google Scholar 

  34. Ge, L., L. P. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36(2):276–297, 2008.

    Article  PubMed  Google Scholar 

  35. Ge, L., S. C. Jones, F. Sotiropoulos, T. M. Healy, and A. P. Yoganathan. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J. Biomech. Eng. 125(5):709–718, 2003.

    Article  PubMed  Google Scholar 

  36. Ge, L., H. L. Leo, F. Sotiropoulos, and A. P. Yoganathan. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng. 127(5):782–797, 2005.

    Article  PubMed  Google Scholar 

  37. Gosman, A., and L. Ioannides. Aspects of compuer simulation of liquid-fueled cumbustors. In: AIAA 19th Aerospace Science Meeting, 81-0323, 1981.

  38. Gosman, A., and L. Ioannides. Aspects of computer simulation of liquid-fuelled combustors. AIAA J. Energy 7(6):482–490, 1983.

    Google Scholar 

  39. Goubergrits, L., and K. Affeld. Numerical estimation of blood damage in artificial organs. Artif. Organs 28(5):499–507, 2004.

    Article  PubMed  Google Scholar 

  40. Goubergrits, L., K. Affeld, and U. Kertzscher. Innovative developments of the heart valves designed for use in ventricular assist devices. Expert Rev. Med. Devices 2(1):61–71, 2005.

    Article  PubMed  Google Scholar 

  41. Govindarajan, V., H. S. Udaykumar, and K. B. Chandran. Two-dimensional simulation of flow and platelet dynamics in the hinge region of a mechanical heart valve. J. Biomech. Eng. 131:031002-1–031002-12, 2009.

    Google Scholar 

  42. Grosset, D. G., D. Georgiadis, A. W. Kelman, P. Cowburn, S. Stirling, K. R. Lees, A. Faichney, A. Mallinson, R. Quin, I. Bone, L. Pettigrew, E. Brodie, T. MacKay, and D. J. Wheatley. Detection of microemboli by transcranial Doppler ultrasound. Tex. Heart Inst. J. 23(4):289–292, 1996.

    PubMed  CAS  Google Scholar 

  43. Guezuraga, R. M., and D. Y. Steinbring. View from industry. Eur. J. Cardiothorac. Surg. 26(Suppl 1):S19–S23, 2004; discussion S23–S26.

    PubMed  Google Scholar 

  44. Harker, L. A., and S. J. Slichter. Studies of platelet and fibrinogen kinetics in patients with prosthetic heart valves. N. Engl. J. Med. 283(24):1302–1305, 1970.

    PubMed  CAS  Google Scholar 

  45. Healy, T. M., J. T. Ellis, A. A. Fontaine, C. A. Jarrett, and A. P. Yoganathan. An automated method for analysis and visualization of laser Doppler velocimetry data. Ann. Biomed. Eng. 25(2):335–343, 1997.

    Article  PubMed  CAS  Google Scholar 

  46. Hochareon, P. M. K., A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Correlation of in vivo clot deposition with the flow characteristics in the 50 cc Penn state artificial heart: a preliminary study. ASAIO J. 50:537–542, 2004.

    Article  PubMed  Google Scholar 

  47. Hochareon, P. M. K., A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Fluid dynamic analysis of the 50 cc Penn State artificial heart under physiological operating conditions using particle image velocimetry. J. Biomech. Eng. 126:585–593, 2004.

    Article  PubMed  Google Scholar 

  48. Hochareon, P. M. K., A. A. Fontaine, J. M. Tarbell, and S. Deutsch. Wall shear-rate estimation within the 50 cc Penn State artificial heart using particle image velocimetry. J. Biomech. Eng. 126:430–437, 2004.

    Article  PubMed  Google Scholar 

  49. Huang, Z. J., C. L. Merkle, S. Abdallah, and J. M. Tarbell. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding. J. Biomech. 27(4):391–402, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Hubbell, J. A. M. L. Visualization and analysis of mural thrombogenesis on collagen, polyurethane and nylon. Biomaterials 7:354–363, 1986.

    Article  PubMed  CAS  Google Scholar 

  51. Jesty, J., and D. Bluestein. Acetylated prothrombin as a substrate in the measurement of the procoagulant activity of platelets: elimination of the feedback activation of platelets by thrombin. Anal. Biochem. 272(1):64–70, 1999.

    Article  PubMed  CAS  Google Scholar 

  52. Jesty, J., and Y. Nemerson. The pathways of blood coagulation, Chap. 122. In: Williams Hematology, edited by E. Beutler, M. A. Lichtman, B. S. Coller, and T. J. Kipps. New York: McGraw‐Hill, 1995, pp. 1227–1238.

  53. Jesty, J., W. Yin, P. Perrotta, and D. Bluestein. Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14(3):143–149, 2003.

    Article  PubMed  CAS  Google Scholar 

  54. Jin, W., and C. Clark. Experimental investigation of unsteady flow behaviour within a sac-type ventricular assist device (VAD). J. Biomech. 26(6):697–707, 1993.

    Article  PubMed  CAS  Google Scholar 

  55. Kafesjian, R., M. Howanec, G. D. Ward, L. Diep, L. S. Wagstaff, and R. Rhee. Cavitation damage of pyrolytic carbon in mechanical heart valves. J. Heart Valve Dis. 3(Suppl 1):S2–S7, 1994.

    PubMed  Google Scholar 

  56. Kawahito, K., H. Adachi, and T. Ino. Platelet activation in the gyro C1E3 centrifugal pump: comparison with the terumo capiox and the Nikkiso HPM-15. Artif. Organs 24(11):889–892, 2000.

    Article  PubMed  CAS  Google Scholar 

  57. Kelly, S. G., P. R. Verdonck, J. A. Vierendeels, K. Riemslagh, E. Dick, and G. G. Van Nooten. A three-dimensional analysis of flow in the pivot regions of an ATS bileaflet valve. Int. J. Artif. Organs 22(11):754–763, 1999.

    PubMed  CAS  Google Scholar 

  58. King, M. J., T. David, and J. Fisher. Three-dimensional study of the effect of two leaflet opening angles on the time-dependent flow through a bileaflet mechanical heart valve. Med. Eng. Phys. 19(3):235–241, 1997.

    Article  PubMed  CAS  Google Scholar 

  59. Kini, V., C. Bachmann, A. Fontaine, S. Deutsch, and J. M. Tarbell. Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves. Artif. Organs 25(2):136–145, 2001.

    Article  PubMed  CAS  Google Scholar 

  60. Kiris, C., D. Kwak, S. Rogers, and I. D. Chang. Computational approach for probing the flow through artificial heart devices. J. Biomech. Eng. 119(4):452–460, 1997.

    Article  PubMed  CAS  Google Scholar 

  61. Klaus, S., S. Korfer, K. Mottaghy, H. Reul, and B. Glasmacher. In vitro blood damage by high shear flow: human versus porcine blood. Int. J. Artif. Organs 25(4):306–312, 2002.

    PubMed  CAS  Google Scholar 

  62. Krafczyk, M., M. Cerrolaza, M. Schulz, and E. Rank. Analysis of 3D transient blood flow passing through an artificial aortic valve by Lattice-Boltzmann methods. J. Biomech. 31(5):453–462, 1998.

    Article  PubMed  CAS  Google Scholar 

  63. Krishnan, S., H. S. Udaykumar, J. S. Marshall, and K. B. Chandran. Two-dimensional dynamic simulation of platelet activation during mechanical heart valve closure. Ann. Biomed. Eng. 34(10):1519–1534, 2006.

    Article  PubMed  CAS  Google Scholar 

  64. Kuharsky, A. L., and A. L. Fogelson. Surface-mediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophys. J. 80(3):1050–1074, 2001.

    Article  PubMed  CAS  Google Scholar 

  65. Laas, J., P. Kleine, M. J. Hasenkam, and H. Nygaard. Orientation of tilting disc and bileaflet aortic valve substitutes for optimal hemodynamics. Ann. Thorac. Surg. 68(3):1096–1099, 1999.

    Article  PubMed  CAS  Google Scholar 

  66. Laas, J., S. Kseibi, M. Perthel, A. Klingbeil, L. El-Ayoubi, and A. Alken. Impact of high intensity transient signals on the choice of mechanical aortic valve substitutes. Eur. J. Cardiothorac. Surg. 23(1):93–96, 2003.

    Article  PubMed  Google Scholar 

  67. Lamson, T. C., G. Rosenberg, D. B. Geselowitz, S. Deutsch, D. R. Stinebring, J. A. Frangos, and J. M. Tarbell. Relative blood damage in the three phases of a prosthetic heart valve flow cycle. ASAIO J. 39(3):M626–M633, 1993.

    Article  PubMed  CAS  Google Scholar 

  68. Lazar, R. M., P. A. Shapiro, B. E. Jaski, M. K. Parides, R. C. Bourge, J. T. Watson, L. Damme, W. Dembitsky, J. D. Hosenpud, L. Gupta, A. Tierney, T. Kraus, and Y. Naka. Neurological events during long-term mechanical circulatory support for heart failure: the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) experience. Circulation 109(20):2423–2427, 2004.

    Article  PubMed  Google Scholar 

  69. Lee, C. S., K. B. Chandran, and L. D. Chen. Cavitation dynamics of medtronic hall mechanical heart valve prosthesis: fluid squeezing effect. J. Biomech. Eng. 118(1):97–105, 1996.

    Article  PubMed  CAS  Google Scholar 

  70. Long, J. A. U. A., K. B. Manning, and S. Deutsch. Viscoelasticity of pediatric blood and its implications for the testing of a pulsatile pediatric blood pump. ASAIO J. 51:563–566, 2005.

    Article  PubMed  Google Scholar 

  71. Mackay, T. G., D. Georgiadis, D. G. Grosset, K. R. Lees, and D. J. Wheatley. On the origin of cerebrovascular microemboli associated with prosthetic heart valves. Neurol. Res. 17(5):349–352, 1995.

    PubMed  CAS  Google Scholar 

  72. Makhijani, V. B., H. Q. Yang, A. K. Singhal, and N. H. Hwang. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound. J. Heart Valve Dis. 3(Suppl 1):S35–S44, 1994; discussion S44–S38.

    PubMed  Google Scholar 

  73. Mann, K. A. D. S., J. M. Tarbell, D. B. Geselowitz, G. Rosenberg, and W. S. Pierce. An experimental study of Newtonian and non-Newtonian flow dynamics in a ventricular assist device. J. Biomech. Eng. 109:139–147, 1987.

    Article  PubMed  CAS  Google Scholar 

  74. Manning, K. B. W. B., N. Yang, A. Fontaine, and S. Deutsch. Flow behavior within the 12 cc Penn State pulsatile pediatric ventricular assist device: an experimental study of the initial design. Artif. Organs 32:442–452, 2008.

    Article  PubMed  Google Scholar 

  75. Medvitz, R. B., J. W. Kreider, K. B. Manning, A. A. Fontaine, S. Deutsch, and E. G. Paterson. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO J. 53:122–131, 2007.

    Article  PubMed  Google Scholar 

  76. NHLBI Working Group R.R.c., T. Baldwin (NHLBI), et al. Next Generation Ventricular Assist Devices for Destination Therapy, Working Group Executive Summary. National Heart Lungs and Blood Institute, 2004.

  77. Nobili, M., J. Sheriff, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. 54(1):64–72, 2008.

    Article  PubMed  Google Scholar 

  78. O’Brien, J. R. Shear-induced platelet aggregation. Lancet 335(8691):711–713, 1990.

    Article  PubMed  Google Scholar 

  79. O’Brien, J. R., and G. P. Salmon. An independent haemostatic mechanism: shear induced platelet aggregation. Adv. Exp. Med. Biol. 281:287–296, 1990.

    PubMed  Google Scholar 

  80. Paul, R., O. Marseille, E. Hintze, L. Huber, H. Schima, H. Reul, and G. Rau. In vitro thrombogenicity testing of artificial organs. Int. J. Artif. Organs 21(9):548–552, 1998.

    PubMed  CAS  Google Scholar 

  81. Reininger, C. B., R. Lasser, M. Rumitz, C. Boger, and L. Schweiberer. Computational analysis of platelet adhesion and aggregation under stagnation point flow conditions. Comput. Biol. Med. 29(1):1–18, 1999.

    Article  PubMed  CAS  Google Scholar 

  82. Rose, E. A., A. J. Moskowitz, M. Packer, J. A. Sollano, D. L. Williams, A. R. Tierney, D. F. Heitjan, P. Meier, D. D. Ascheim, R. G. Levitan, A. D. Weinberg, L. W. Stevenson, P. A. Shapiro, R. M. Lazar, J. T. Watson, D. J. Goldstein, and A. C. Gelijns. The REMATCH trial: rationale, design, and end points. Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure. Ann. Thorac. Surg. 67(3):723–730, 1999.

    Article  PubMed  CAS  Google Scholar 

  83. Roszelle, B. N. C. B., T. C. Long, S. Deutsch, and K. B. Manning. The 12 cc Penn State pulsatile pediatric ventricular assist device: flow field observations at a reduced beat rate with application to weaning. ASAIO J. 54:325–331, 2008.

    Article  PubMed  Google Scholar 

  84. Schima, H., M. R. Muller, D. Papantonis, C. Schlusche, L. Huber, C. Schmidt, W. Trubel, H. Thoma, U. Losert, and E. Wolner. Minimization of hemolysis in centrifugal blood pumps: influence of different geometries. Int. J. Artif. Organs 16(7):521–529, 1993.

    PubMed  CAS  Google Scholar 

  85. Schima, H., H. Siegl, S. F. Mohammad, L. Huber, M. R. Muller, U. Losert, H. Thoma, and E. Wolner. In vitro investigation of thrombogenesis in rotary blood pumps. Artif. Organs 17(7):605–608, 1993.

    Article  PubMed  CAS  Google Scholar 

  86. Schima, H., and G. Wieselthaler. Mechanically induced blood trauma: are the relevant questions already solved, or is it still an important field to be investigated? Artif. Organs 19(7):563–564, 1995.

    Article  PubMed  CAS  Google Scholar 

  87. Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: I. Model development and properties. Ann. Biomed. Eng. 27(4):436–448, 1999.

    Article  PubMed  CAS  Google Scholar 

  88. Sorensen, E. N., G. W. Burgreen, W. R. Wagner, and J. F. Antaki. Computational simulation of platelet deposition and activation: II. Results for Poiseuille flow over collagen. Ann. Biomed. Eng. 27(4):449–458, 1999.

    Article  PubMed  CAS  Google Scholar 

  89. Stevenson, L. W., L. W. Miller, P. Desvigne-Nickens, et al. Left ventricular assist device as destination for patients undergoing intravenous inotropic therapy: a subset analysis from REMATCH (Randomized Evaluation of Mechanical Assistance in Treatment of Chronic Heart Failure). Circulation 110:975–981, 2004.

    Article  PubMed  Google Scholar 

  90. Turitto, V. T., and H. J. Weiss. Red blood cells: their dual role in thrombus formation. Science 207(4430):541–543, 1980.

    Article  PubMed  CAS  Google Scholar 

  91. Worth Longest, P., and C. Kleinstreuer. Comparison of blood particle deposition models for non-parallel flow domains. J. Biomech. 36(3):421–430, 2003.

    Article  PubMed  CAS  Google Scholar 

  92. Wurzinger, L. J., P. Blasberg, and H. Schmid-Schonbein. Towards a concept of thrombosis in accelerated flow: rheology, fluid dynamics, and biochemistry. Biorheology 22(5):437–450, 1985.

    PubMed  CAS  Google Scholar 

  93. Yamanaka, H. R. G., W. J. Weiss, A. J. Snyder, C. M. Zapanta, and C. A. Siedlecki. Short-term in vivo studies of surface thrombosis in a left ventricular assist system. ASAIO J. 52:257–265, 2006.

    Article  PubMed  Google Scholar 

  94. Yin, W., Y. Alemu, K. Affeld, J. Jesty, and D. Bluestein. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann. Biomed. Eng. 32(8):1058–1066, 2004.

    Article  PubMed  Google Scholar 

  95. Yin, W., S. Gallocher, L. Pinchuk, R. T. Schoephoerster, J. Jesty, and D. Bluestein. Flow induced platelet activation in a St. Jude MHV, a trileaflet polymeric heart valve and a St. Jude tissue valve. Artif. Organs 29(10):826–831, 2005.

    Article  PubMed  Google Scholar 

  96. Yoganathan, A. P., K. B. Chandran, and F. Sotiropoulos. Flow in prosthetic heart valves: state-of-the-art and future directions. Ann. Biomed. Eng. 33(12):1689–1694, 2005.

    Article  PubMed  Google Scholar 

  97. Yoganathan, A. P., J. T. Ellis, T. M. Healy, and G. P. Chatzimavroudis. Fluid dynamic studies for the year 2000. J. Heart Valve Dis. 7(2):130–139, 1998.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bluestein.

Additional information

Associate Editor Larry V. McIntire oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bluestein, D., Chandran, K.B. & Manning, K.B. Towards Non-thrombogenic Performance of Blood Recirculating Devices. Ann Biomed Eng 38, 1236–1256 (2010). https://doi.org/10.1007/s10439-010-9905-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9905-9

Keywords

Navigation