Skip to main content

Advertisement

Log in

Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

In this study, the antimicrobial activities based on the synergistic effects of traditional antibiotics (imipenem, cefepime, levofloxacin hydrochloride and vancomycin) and antimicrobial peptides (AMPs; PL-5, PL-31, PL-32, PL-18, PL-29 and PL-26), alone or in combination, against three Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae and Staphylococcus epidermidis) and three Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae) were investigated. In addition, the antimicrobial activity that was based on the synergistic effects of levofloxacin hydrochloride and PL-5 against Staphylococcus aureus in vivo was explored in a mouse infection model. Traditional antibiotics and AMPs showed significant synergistic effects on the antibacterial activities against the different Gram-positive and Gram-negative bacteria in vitro. A strong synergistic effect in the PL-5 and levofloxacin hydrochloride combination against Staphylococcus aureus was observed in the mouse infection model in vivo. The mechanism of synergistic action was due to the different targets of AMPs and traditional antibiotics. The combination of AMPs and traditional antibiotics can dramatically enhance antimicrobial activity and may help prevent or delay the emergence of antibiotic resistance. Thus, this combination therapy could be a promising approach to treat bacterial infections, particularly mixed infections and multi-antibiotic-resistant infections, in the clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Troillet N, Samore MH, Carmeli Y (1997) Imipenem-resistant Pseudomonas aeruginosa: risk factors and antibiotic susceptibility patterns. Clin Infect Dis 25:1094–1098

    Article  CAS  PubMed  Google Scholar 

  2. Hardin TC, Jennings TS (1994) Cefepime. Pharmacotherapy 14:657–668

    CAS  PubMed  Google Scholar 

  3. Davis R, Bryson HM (1994) Levofloxacin. A review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs 47:677–700

    Article  CAS  PubMed  Google Scholar 

  4. Ge M, Chen Z, Onishi HR, Kohler J, Silver LL, Kerns R, Fukuzawa S, Thompson C, Kahne D (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284:507–511

    Article  CAS  PubMed  Google Scholar 

  5. Fernandes P (2006) Antibacterial discovery and development—the failure of success? Nat Biotechnol 24:1497–1503

    Article  CAS  PubMed  Google Scholar 

  6. Safdar N, Handelsman J, Maki DG (2004) Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis 4:519–527

    Article  PubMed  Google Scholar 

  7. Spiegel CA (1988) Laboratory detection of high-level aminoglycoside-aminocyclitol resistance in Enterococcus spp. J Clin Microbiol 26:2270–2274

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME (2005) Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis 41:149–158

    Article  CAS  PubMed  Google Scholar 

  9. Hirano L, Bayer AS (1991) Beta-Lactam-beta-lactamase-inhibitor combinations are active in experimental endocarditis caused by beta-lactamase-producing oxacillin-resistant staphylococci. Antimicrob Agents Chemother 35:685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grindey GB, Nichol CA (1972) Interaction of drugs inhibiting different steps in the synthesis of DNA. Cancer Res 32:527–531

    CAS  PubMed  Google Scholar 

  11. Cirioni O, Ghiselli R, Orlando F, Silvestri C, Mocchegiani F, Rocchi M, Chiodi L, Abbruzzetti A, Saba V, Scalise G, Giacometti A (2007) Efficacy of colistin/rifampin combination in experimental rat models of sepsis due to a multiresistant Pseudomonas aeruginosa strain. Crit Care Med 35:1717–1723

    Article  CAS  PubMed  Google Scholar 

  12. De Clercq E (2004) Antiviral drugs in current clinical use. J Clin Virol 30:115–133

    Article  PubMed  Google Scholar 

  13. Cirioni O, Giacometti A, Ghiselli R, Kamysz W, Orlando F, Mocchegiani F, Silvestri C, Licci A, Chiodi L, Lukasiak J, Saba V, Scalise G (2006) Citropin 1.1-treated central venous catheters improve the efficacy of hydrophobic antibiotics in the treatment of experimental staphylococcal catheter-related infection. Peptides 27:1210–1216

    Article  CAS  PubMed  Google Scholar 

  14. Hancock RE, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 51:1398–1406

    Article  CAS  PubMed  Google Scholar 

  17. Hancock RE (1998) The therapeutic potential of cationic peptides. Expert Opin Investig Drugs 7:167–174

    Article  CAS  PubMed  Google Scholar 

  18. Marr AK, Gooderham WJ, Hancock RE (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Mant CT, Farmer SW, Hancock RE, Vasil ML, Hodges RS (2005) Rational design of alpha-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem 280:12316–12329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pillai SK, Moellering R, Eliopoulos GM (2005) Antimicrobial combinations. Antibiot Lab Med 5:365–440

    Google Scholar 

  21. Petersen PJ, Labthavikul P, Jones CH, Bradford PA (2006) In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time–kill kinetic analysis. J Antimicrob Chemother 57:573–576

    Article  CAS  PubMed  Google Scholar 

  22. Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  PubMed  Google Scholar 

  23. Zhu L-W, Shi L-M, Jiang J-X, Yang Z-K, Chen P (2008) Studies on Antibacterial Properties of the Natural Bamboo Fabric Based on FZ/T 73023—2006 [J]. J Donghua Univ (Nat Sci) 4:005

    Google Scholar 

  24. Zhang L, Benz R, Hancock RE (1999) Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Biochemistry 38:8102–8111

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Falla T, Wu M, Fidai S, Burian J, Kay W, Hancock RE (1998) Determinants of recombinant production of antimicrobial cationic peptides and creation of peptide variants in bacteria. Biochem Biophys Res Commun 247:674–680

    Article  CAS  PubMed  Google Scholar 

  26. Zhao LJ, Huang YB, Gao S, Cui Y, He D, Wang L, Chen YX (2013) Comparison on effect of hydrophobicity on the antibacterial and antifungal activities of α-helical antimicrobial peptides. Science China (Chemistry) 56:1307–1314

    Article  CAS  Google Scholar 

  27. Hong SY, Oh JE, Lee KH (1999) Effect of D-amino acid substitution on the stability, the secondary structure, and the activity of membrane-active peptide. Biochem Pharmacol 58:1775–1780

    Article  CAS  PubMed  Google Scholar 

  28. Nichols RL, Graham DR, Barriere SL, Rodgers A, Wilson SE, Zervos M, Dunn DL, Kreter B (1999) Treatment of hospitalized patients with complicated gram-positive skin and skin structure infections: two randomized, multicentre studies of quinupristin/dalfopristin versus cefazolin, oxacillin or vancomycin. Synercid Skin and Skin Structure Infection Group. J Antimicrob Chemother 44:263–273

    Article  CAS  PubMed  Google Scholar 

  29. Ehrenstein G, Lecar H (1977) Electrically gated ionic channels in lipid bilayers. Q Rev Biophys 10:1–34

    Article  CAS  PubMed  Google Scholar 

  30. Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6:452–456

    Article  CAS  PubMed  Google Scholar 

  31. Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    Article  CAS  PubMed  Google Scholar 

  32. Livermore DM (2003) Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis 36:S11–S23

    Article  CAS  PubMed  Google Scholar 

  33. Mataraci E, Dosler S (2012) In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother 56:6366–6371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jenssen H, Hamill P, Hancock RE (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y, Vasil AI, Rehaume L, Mant CT, Burns JL, Vasil ML, Hancock RE, Hodges RS (2006) Comparison of biophysical and biologic properties of alpha-helical enantiomeric antimicrobial peptides. Chem Biol Drug Des 67:162–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 81373445, Y. X. C.), the Innovative Team of Peptide Drugs of Jilin Province (no. 20121807, Y. X. C.), the Natural Science Foundation of Jilin Province (no. 20140101042JC, Y. B. H.) and a Basic Scientific Research Grant from Jilin University (Y. X. C. and Y. B. H.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Chen.

Electronic supplementary material

Below are the links to the electronic supplementary material.

Figure S1

Analytical RP-HPLC chromatograms of purified peptides. Column: reversed-phase Zorbax SB-300-C8 (150-mm × 4.6-mm inner diameter); experiments were carried out with a linear AB gradient (1 % B/min) at a flow rate of 1 ml/min. Eluent A was 0.1 % aqueous trifluoroacetic acid (TFA) and eluent B was 0.1 % TFA in acetonitrile. The sequences of the peptides are shown in Table 1. (GIF 38 kb)

High-resolution image (TIFF 872 kb)

Figure S2

Mass spectra of peptides. Mass spectrometry analyses were conducted using an AB SCIEX MALDI TOF/TOF 5800 Analyzer (AB SCIEX, USA). Mass spectra were acquired in the reflector mode in the m/z 1,000–4,000 mass range. The sequences of the peptides are shown in Table 1. (GIF 42 kb)

High-resolution image (TIFF 919 kb)

Table S1

(DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Huang, Y., Chen, M. et al. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo. Eur J Clin Microbiol Infect Dis 34, 197–204 (2015). https://doi.org/10.1007/s10096-014-2219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2219-3

Keywords

Navigation