Skip to main content
Log in

Value of intensive diagnostic microbiological investigation in low- and high-risk patients with community-acquired pneumonia

  • Article
  • Published:
European Journal of Clinical Microbiology and Infectious Diseases Aims and scope Submit manuscript

Abstract

In a prospective study to evaluate the diagnostic yield of different microbiological tests in hospitalised patients with community-acquired pneumonia, material for microbiological investigation was obtained from 262 patients. Clinical samples consisted of the following: sputum for Gram staining, culture, and detection of pneumococcal antigen; blood for culture and serological tests; urine for detection of Legionella pneumophila serogroup 1 antigen and pneumococcal antigen; and specimens obtained by fiberoptic bronchoscopy. A pathogen was identified in 158 (60%) patients, with Streptococcus pneumoniae (n=97) being the most common causative agent of community-acquired pneumonia. In 82% of the 44 patients with an adequate sputum specimen, a positive Gram stain was confirmed by positive sputum culture. S. pneumoniae infections were detected principally when adequate sputum specimens were examined by Gram stain and culture and when adequate and inadequate sputum specimens were tested for the presence of pneumococcal antigen (n=58; 60%). The urinary pneumococcal antigen test was the most valuable single test for detection of S. pneumoniae infections (n=52; 54%) when sputum pneumococcal antigen determination was not performed. Fiberoptic bronchoscopy was of additive diagnostic value in 49% of the patients who did not expectorate sputum and in 52% of those in whom treatment failed. Investigation of sputum by a combination of Gram stain, culture, and detection of pneumococcal antigen was the most useful means of establishing an aetiological diagnosis of community-acquired pneumonia, followed by testing of urine for pneumococcal antigen. Fiberoptic bronchoscopy may be of additional value when treatment failure occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bartlett JG, Dowell SF, Mandell LA, File TM Jr, Musher DM, Fine MJ (2000) Practice guidelines for the management of community-acquired pneumonia in adults. Clin Infect Dis 31:347–382

    CAS  PubMed  Google Scholar 

  2. Niederman MS, Mandell LA, Anzueto A, et al (2001) Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am J Respir Crit Care Med 163:1730–1754

    CAS  PubMed  Google Scholar 

  3. Theerthakarai R, El-Halees W, Ismail M, Solis R, Anees Khan M (2001) Nonvalue of the initial microbiological studies in the management of nonsevere community-acquired pneumonia. Chest 119:181–184

    CAS  PubMed  Google Scholar 

  4. Woodhead MA, Arrowsmith J, Chamberlain-Webber R, Wooding S, Williams I (1991) The value of routine microbial investigation in community-acquired pneumonia. Respir Med 85:313–317

    CAS  PubMed  Google Scholar 

  5. San Pedro GS, Campbell GD Jr (1997) Limitations of diagnostic testing in the initial management of patients with community-acquired pneumonia. Semin Respir Infect 12:300–307

    PubMed  Google Scholar 

  6. Sanyal S, Smith PR, Saha AC, Gupta S, Berkowitz L, Homel P (1999) Initial microbiologic studies did not affect outcome in adults hospitalized with community-acquired pneumonia. Am J Respir Crit Care Med 160:346–348

    CAS  PubMed  Google Scholar 

  7. Chuard C, Barth Reller L (1999) Diagnostic value of Gram stain and culture of sputum and endotracheal aspirates in bacteremic pneumococcal pneumonia. Clin Microbiol Infect 5:106–109

    PubMed  Google Scholar 

  8. Fang GD, Fine M, Orloff J, et al (1990) New and emerging etiologies for community-acquired pneumonia with implications for therapy. A prospective multicenter study of 359 cases. Medicine 69:307–316

    CAS  PubMed  Google Scholar 

  9. Brown PD, Lerner SA (1998) Community-acquired pneumonia. Lancet 352:1295–1302

    CAS  PubMed  Google Scholar 

  10. Bohte R, van Furth R, van den Broek PJ (1995) Aetiology of community-acquired pneumonia: a prospective study among adults requiring admission to hospital. Thorax 50:543–547

    CAS  PubMed  Google Scholar 

  11. Neill AM, Martin IR, Weir R, et al (1996) Community-acquired pneumonia: aetiology and usefulness of severity criteria on admission. Thorax 51:1010–1016

    CAS  PubMed  Google Scholar 

  12. Lim WS, Macfarlane JT, Boswell TC, et al (2001) Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management guidelines. Thorax 56:296–301

    CAS  PubMed  Google Scholar 

  13. Gould IM (1999) A review of the role of antibiotic policies in the control of antibiotic resistance. J Antimicrob Chemother 43:459–465

    CAS  PubMed  Google Scholar 

  14. Gold HS, Moellering RC Jr (1996) Antimicrobial drug resistance. N Engl J Med 335:1445–1453

    CAS  PubMed  Google Scholar 

  15. Arancibia F, Ewig S, Martinez JA, et al (2000) Antimicrobial treatment failures in patients with community-acquired pneumonia. Am J Respir Crit Care Med 162:154–160

    CAS  PubMed  Google Scholar 

  16. Murdoch DR, Laing RTR, Mills GD, et al (2001) Evaluation of a rapid immunochromatographic test for detection of Streptococcus pneumoniae antigen in urine samples from adults with community-acquired pneumonia. J Clin Microbiol 39:3495–3498

    CAS  PubMed  Google Scholar 

  17. Smith MD, Derrington P, Evans R, et al (2003) Rapid diagnosis of bacteremic pneumococcal infections in adults by using the Binax NOW Streptococcus pneumoniae urinary antigen test: a prospective, controlled clinical evaluation. J Clin Microbiol 41:2810–2813

    CAS  PubMed  Google Scholar 

  18. Dominguez J, Gali N, Blanco S, et al (2001) Detection of Streptococcus pneumoniae antigen by a rapid immunochromatographic asssay in urine samples. Chest 119:243–249

    CAS  PubMed  Google Scholar 

  19. Gutiérrez F, Masiá M, Rodríguez JC, et al (2003) Evaluation of the immunochromatographic Binax NOW assay for detection of Streptococcus pneumoniae urinary antigen in a prospective study of community-acquired pneumonia in Spain. Clin Infect Dis 36:286–292

    PubMed  Google Scholar 

  20. Rosón B, Fernández-Sabé N, Carratalà J, Verdaguer R, Dorca J, Manresa F, Gudiol F (2004) Contribution of a urinary antigen assay (Binax NOW) to the early diagnosis of pneumococcal pneumonia. Clin Infect Dis 38:222–226

    PubMed  Google Scholar 

  21. Feinsilver SH, Fein AM, Niederman MS, Schultz DE, Faegenburg DH (1990) Utility of fiberoptic bronchoscopy in nonresolving pneumonia. Chest 98:1322–1326

    CAS  PubMed  Google Scholar 

  22. Örtqvist A, Kalin M, Lejdeborn L, Lundberg B (1990) Diagnostic fiberoptic bronchoscopy and protected brush culture in patients with community-acquired pneumonia. Chest 97:576–582

    PubMed  Google Scholar 

  23. Fine MJ, Auble TE, Yealy DM, et al (1997) A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 336:243–250

    CAS  PubMed  Google Scholar 

  24. Lim WS, van der Eerden MM, Laing R, et al (2003) Defining community-acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax 58:377–382

    CAS  PubMed  Google Scholar 

  25. van der Eerden MM, de Graaff CS, Bronsveld W, Jansen HM, Boersma WG (2004) Prospective evaluation of pneumonia severity index in hospitalised patients with community-acquired pneumonia. Respir Med 98:872–878

    PubMed  Google Scholar 

  26. Waterer GW, Baselski VS, Wunderink RG (2001) Legionella and community-acquired pneumonia: a review of current diagnostic tests from a clinician’s viewpoint. Am J Med 110:41–48

    CAS  PubMed  Google Scholar 

  27. Rosón B, Carratalà J, Verdaguer R, Dorca J, Manresa F, Gudiol F (2000) Prospective study of the usefulness of sputum Gram stain in the initial approach to community-acquired pneumonia requiring hospitalization. Clin Infect Dis 31:869–874

    PubMed  Google Scholar 

  28. Gleckman R, DeVita J, Hibert D, Pelletier C, Martin R (1988) Sputum Gram stain assessment in community-acquired bacteremic pneumonia. J Clin Microbiol 26:846–849

    CAS  PubMed  Google Scholar 

  29. Boersma WG, Saro M, Gerritsen J, et al (1996) Influence of carriage of pneumococci in the nasopharynx of children on pneumococcal antigen detection. Eur J Clin Microbiol Infect Dis 15:426–427

    CAS  PubMed  Google Scholar 

  30. Lehtomäki K, Leinonen M, Takala A, Hovi T, Herva E, Koskela M (1988) Etiological diagnosis of pneumonia in military conscripts by combined use of bacterial culture and serological methods. Eur J Clin Microbiol Infect Dis 7:348–354

    PubMed  Google Scholar 

  31. Woodhead MA, Macfarlane JT, McCracken JS, Rose DH, Finch RG (1987) Prospective study of the aetiology and outcome of pneumonia in the community. Lancet 7:671–674

    Google Scholar 

  32. Waterer GW, Wunderink RG (2001) The influence of the severity of community-acquired pneumonia on the usefulness of blood cultures. Respir Med 95:78–82

    CAS  PubMed  Google Scholar 

  33. Chalasani NP, Valdecanas MAL, Gopal AK, McGowan JE, Jurado RL (1995) Clinical utility of blood cultures in adult patients with community-acquired pneumonia without defined underlying risks. Chest 108:932–936

    CAS  PubMed  Google Scholar 

  34. Waterer GW, Jennings G, Wunderink RG (1999) The impact of blood cultures on antibiotic therapy in pneumococcal pneumonia. Chest 116:1278–1281

    CAS  PubMed  Google Scholar 

  35. File TM Jr, Segreti J, Dunbar L, et al (1997) A multicenter, randomized study comparing the efficacy and safety of intravenous and/or oral levofloxacin versus ceftriaxone and/or cefuroxime axetil in treatment of adults with community-acquired pneumonia. Antimicrob Agents Chemother 41:1965–1972

    CAS  PubMed  Google Scholar 

  36. Mundy LM, Oldach D, Auwaerter PG, et al (1998) Implications for macrolide treatment in community-acquired pneumonia. Hopkins CAP Team. Chest 113:1201–1206

    CAS  Google Scholar 

  37. Van Kasteren ME, Wijnands WJ, Stobberingh EE, et al (1998) Optimization of the antibiotic policy in the Netherlands. II. SWAB guidelines for the antimicrobial therapy of pneumonia in patients at home and as nosocomial infections. Ned Tijdschr Geneeskd 142:952–956

    PubMed  Google Scholar 

  38. Gordon KA, Biedenbach DJ, Jones RN (2003) Comparison of Streptococcus pneumoniae and Haemophilus influenzae susceptibilities from community-acquired respiratory tract infections and hospitalized patients with pneumonia: five-year results for the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 46:285–289

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Mrs. Y. Holloway for her assistance in editing this manuscript. No potential conflicts of financial interest are present

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. G. Boersma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Eerden, M.M., Vlaspolder, F., de Graaff, C.S. et al. Value of intensive diagnostic microbiological investigation in low- and high-risk patients with community-acquired pneumonia. Eur J Clin Microbiol Infect Dis 24, 241–249 (2005). https://doi.org/10.1007/s10096-005-1316-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-005-1316-8

Keywords

Navigation